【新教材】10.3.1频率的稳定性(人教A版)1.通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.2.通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.1.数学抽象:频率的稳定性的理解.2.数学运算:概率的应用.重点:通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.难点:大量重复实验得到频率的稳定值的分析.一、预习导入阅读课本251-254页,填写。
1.频率的稳定性一般地,随着试验次数n的增大,频率偏离概率的幅度会_________,即事件A发生的频率fn(A)会逐渐_________事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).2.概率与频率的区别与联系频率概率区别频率反映了一个随机事件发生的频繁程度,是随机的概率是一个确定的值,它反映随机事件发生的可能性的大小联系频率是概率的估计值,随着试验次数的增加,频率会越来越接近概率1.已知某厂的产品合格率为90%,现抽出10件产品检查,则下列说法正确的是( )A.合格产品少于9件 B.合格产品多于9件C.合格产品正好是9件D.合格产品可能是9件2.某银行储蓄卡上的密码是一个6位数号码,每位上的数字可以在0~9这10个数字中选取,某人未记住密码的最后一位数字,如果随意按密码的最后一位数字,则正好按对密码的概率是( )A.B.C.D.3.某人将一枚硬币连掷10次,正面朝上的情况出现了8次,若用A表示“正面朝上”这一事件,则A的( )A.概率为B.频率为C.频率为8D.概率接近于84.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.题型一概率的稳定性例1新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得知,我国2014年、2015年出生的婴儿性别比分别为115.88和113.51.(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);(2)根据估计结果,你认为“生男孩和生女孩是等可能的”这个判断可靠吗?
跟踪训练一1.(多选题)给出下列四个命题,其中正确的命题有()A.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正直朝上的概率是B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是D.随机事件发生的频率不一定是这个随机事件发生的概率题型二概率的应用例2一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次。而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?跟踪训练二1.如图所示,有两个可以自由转动的均匀转盘A,B,转盘A被平均分成3等份,分别标上1,2,3三个数字;转盘B被平均分成4等份,分别标上3,4,5,6四个数字.现为甲、乙两人设计游戏规则:自由转动转盘A和B,转盘停止后,指针指上一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则乙获胜,你认为这个规则公平吗?1.“某彩票的中奖概率为”意味着( )A.买1000张彩票就一定能中奖B.买1000张彩票中一次奖C.买1000张彩票一次奖也不中D.购买彩票中奖的可能性是2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是( )(1)选出1人是班长的概率为;(2)选出1人是男生的概率是;
(3)选出1人是女生的概率是;(4)在女生中选出1人是班长的概率是0.A.(1)(2)B.(1)(3)C.(3)(4)D.(1)(4)3.利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为________(保留两位小数).4.一个袋中装有一定数量差别较大的白球和黑球,从中任取一球,取出的是白球,估计袋中数量少的球是________.5.种子公司在春耕前为了支持农业建设,采购了一批稻谷种子,进行了种子发芽试验.在统计的2000粒种子中有1962粒发芽.(1)计算“种子发芽”这个事件发生的频率;(2)若用户需要该批稻谷种芽100000粒,需采购该批稻谷种子多少千克(每千克约1000粒)?答案小试牛刀1.D2.D.3.B.4.500.自主探究例1【答案】(1)2014年男婴出生率约为0.537,2015年男婴出生率约为0.532.(2)见解析.【解析】(1)2014年男婴出生的频率为≈0.537,2015年男婴出生的频率为≈0.532.
由此估计,我国2014年男婴出生率约为0.537,2015年男婴出生率约为0.532.(2)由于调查新生儿人数的样本非常大,根据频率的稳定性,上述对男婴出生率的估计具有较高的可信度.因此,我们有理由怀疑“生男孩和生女孩是等可能的”的结论.跟踪训练一1.【答案】CD【解析】对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B错误;对于C,抛掷骰子次,得点数是的结果有次,则出现点的频率是,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确.故选:CD.例2【答案】见解析【解析】当游戏玩了10次时,甲、乙获胜的频率都为0.5;当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7.根据频率的稳定性,随着实验次数的增加,频率偏离频率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近,而游戏玩到1000次时,甲、乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的,因此,应该支持甲对游戏公平性的判断.跟踪训练二1.【答案】不公平,理由见解析.【解析】列表如下:BA 3456145672567836789由表可知,可能的结果有12种,和为6的结果只有3种.因此,甲获胜的概率为=,乙获胜的概率为=,甲、乙获胜的概率不相等,所以这个游戏规则不公平.当堂检测
1-2.DD 3.0.214.黑球5.【答案】(1)0.981.(2)102.【解析】(1)“种子发芽”这个事件发生的频率为=0.981.(2)若用户需要该批稻种芽100000粒,则需要购该批稻谷种子100000×(粒),故需要购买该批稻谷种子100000×÷1000≈102(千克).