新教材人教版高中数学必修第二册教案:7.2.1《复数的加、减法运算及其几何意义》
加入VIP免费下载

新教材人教版高中数学必修第二册教案:7.2.1《复数的加、减法运算及其几何意义》

ID:1226959

大小:165.5 KB

页数:6页

时间:2022-08-16

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
格致课堂【新教材】7.2.1复数的加、减法运算及其几何意义教学设计(人教A版)复数四则运算是本章的重点,复数代数形式的加法的运算法则是一种规定,复数的减法运算法则是通过转化为加法运算而得出的.渗透了转化的数学思想方法,使学生体会数学思想的素材.课程目标:1.掌握复数代数形式的加、减运算法则; 2.了解复数代数形式的加、减运算的几何意义.数学学科素养1.逻辑推理:根据复数与平面向量的对应关系推导其几何意义;2.数学运算:复数加、减运算及有其几何意义求相关问题;3.数学建模:结合复数加、减运算的几何意义和平面图形,数形结合,综合应用.重点:复数的代数形式的加、减运算及其几何意义.难点:加、减运算及其几何意义.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练.教学工具:多媒体.一、情景导入提问:1、试判断下列复数在复平面中落在哪象限?并画出其对应的向量。2、同时用坐标和几何形式表示复数所对应的向量,并计算。3、向量的加减运算满足何种法则?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探. 格致课堂二、预习课本,引入新课阅读课本75-76页,思考并完成以下问题1、复数的加法、减法如何进行?复数加法、减法的几何意义如何? 2、复数的加、减法与向量间的加减运算是否相同?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、新知探究1.复数加法与减法的运算法则(1)设z1=a+bi,z2=c+di是任意两个复数,则①z1+z2=(a+c)+(b+d)i;②z1-z2=(a-c)+(b-d)i.(2)对任意z1,z2,z3∈C,有①z1+z2=z2+z1;②(z1+z2)+z3=z1+(z2+z3).2.复数加减法的几何意义图321如图321所示,设复数z1,z2对应向量分别为1,2,四边形OZ1ZZ2为平行四边形,向量与复数z1+z2对应,向量与复数z1-z2对应.思考:类比绝对值|x-x0|的几何意义,|z-z0|(z,z0∈C)的几何意义是什么?提示|z-z0|(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.四、典例分析、举一反三题型一复数的加减运算例1计算:(1)(-3+2i)-(4-5i); 格致课堂(2)(5-6i)+(-2-2i)-(3+2i);(3)(a+bi)+(2a-3bi)+4i(a,b∈R).【答案】(1)-7+7i.(2)-10i.(3)3a+(4-2b)i.【解析】(1)(-3+2i)-(4-5i)=(-3-4)+[2-(-5)]i=-7+7i.(2)(5-6i)+(-2-2i)-(3+2i)=[5+(-2)-3]+[(-6)+(-2)-2]i=-10i.(3)(a+bi)+(2a-3bi)+4i=(a+2a)+(b-3b+4)i=3a+(4-2b)i.解题技巧(复数加减运算技巧)(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)复数的运算可以类比多项式的运算(类似于合并同类项):若有括号,括号优先;若无括号,可以从左到右依次进行计算.跟踪训练一1.计算:(1)2i-[3+2i+3(-1+3i)];(2)(a+2bi)-(3a-4bi)-5i(a,b∈R).【答案】(1)-9i.(2)-2a+(6b-5)i.【解析】(1)原式=2i-(3+2i-3+9i)=2i-11i=-9i.(2)原式=-2a+6bi-5i=-2a+(6b-5)i.题型二复数加减运算的几何意义例2根据复数及其运算的几何意义,求复平面内的两点间的距离.【答案】.【解析】 因为复平面内的点对应的复数分别为.所以之间的距离为解题技巧:(运用复数加、减法运算几何意义注意事项) 格致课堂向量加法、减法运算的平行四边形法则和三角形法则是复数加法、减法几何意义的依据.利用加法“首尾相接”和减法“指向被减数”的特点,在三角形内可求得第三个向量及其对应的复数.注意向量对应的复数是zB-zA(终点对应的复数减去起点对应的复数).跟踪训练二1、已知四边形ABCD是复平面上的平行四边形,顶点A,B,C分别对应于复数-5-2i,-4+5i,2,求点D对应的复数及对角线AC,BD的长.【答案】D对应的复数是1-7i,AC与BD的长分别是和13.【解析】如图,因为AC与BD的交点M是各自的中点,所以有zM==,所以zD=zA+zC-zB=1-7i,因为:zC-zA=2-(-5-2i)=7+2i,所以||=|7+2i|==,因为:zD-zB=(1-7i)-(-4+5i)=5-12i,所以||=|5-12i|==13.故点D对应的复数是1-7i,AC与BD的长分别是和13.题型三复数加、减运算几何意义的应用例3已知z∈C,且|z+3-4i|=1,求|z|的最大值与最小值.【答案】 |z|max=6,|z|min=4.【解析】由于|z+3-4i|=|z-(-3+4i)|=1,所以在复平面上,复数z对应的点Z与复数-3+4i对应的点C之间的距离等于1,故复数z对应的点Z的轨迹是以C(-3,4)为圆心,半径等于1的圆.而|z|表示复数z对应的点Z到原点O的距离,又|OC|=5,所以点Z到原点O的最大距离为5+1=6,最小距离为5-1=4.即|z|max=6,|z|min=4. 格致课堂解题技巧(复数的加、减法运算几何意义的解题技巧)(1)|z-z0|表示复数z,z0的对应点之间的距离,在应用时,要把绝对值号内变为两复数差的形式.(2)|z-z0|=r表示以z0对应的点为圆心,r为半径的圆.(3)涉及复数模的最值问题以及点的轨迹问题,均可从两点间距离公式的复数表达形式入手进行分析判断,然后通过几何方法进行求解.跟踪训练三1.设z1,z2∈C,已知|z1|=|z2|=1,|z1+z2|=,求|z1-z2|.【答案】|z1-z2|=.【解析】设z1=a+bi,z2=c+di(a,b,c,d∈R),由题设知a2+b2=1,c2+d2=1,(a+c)2+(b+d)2=2,又(a+c)2+(b+d)2=a2+2ac+c2+b2+2bd+d2,可得2ac+2bd=0.∴|z1-z2|2=(a-c)2+(b-d)2=a2+c2+b2+d2-(2ac+2bd)=2,∴|z1-z2|=.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本77页练习,80页习题7.2的1、2题.本节课主要是在学生了解复数的概念及其几何意义的基础上,类比实数的加减运算法则探讨得出复数的加减运算法则,类比平面向量的加减运算法则探讨得出复数加减的几何意义,使学生对知识更加融会贯通. 格致课堂

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料