随机抽样方法的应用【例1】 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,干事20人,上级机关为了了解机关人员对政府机构的改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取?[解] 用分层随机抽样抽取.∵20∶100=1∶5,∴=2,=14,=4,即从副处级以上干部中抽取2人,一般干部中抽取14人,干事中抽取4人.∵副处级以上干部与干事人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人,对一般干部采用00,01,…,69编号,然后用随机数法抽取14人.5
1.某学校有教师200人,男学生1200人,女学生1000人.现用分层随机抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为( )A.193 B.192 C.191 D.190B [1000×=80,求得n=192.]频率分布直方图及应用【例2】 某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109),3株;[109,111),9株;[111,113),13株;[113,115),16株;[115,117),26株;[117,119),20株;[119,121),7株;[121,123),4株;[123,125],2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?[解] 分组频数频率累积频率[107,109)30.030.03[109,111)90.090.12[111,113)130.130.25[113,115)160.160.41[115,117)260.260.67[117,119)200.200.875
[119,121)70.070.94[121,123)40.040.98[123,125]20.021.00合计1001.00(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.在本例中由得到的频率分布直方图估计树苗的高度(cm)的平均数.[解] 由频率分布直方图可得树苗的高度(cm)的平均数的估计值为0.03×108+0.09×110+0.13×112+0.16×114+0.26×116+0.20×118+0.07×120+0.04×122+0.02×124=115.46(cm)用样本估计总体分布的方法(1)用样本频率分布估计总体频率分布时,通常要对给定的一组数据进行列表、作图处理,作频率分布表与频率分布直方图时要注意其方法步骤.(2)借助图表,可以把抽样获得的庞杂数据变得直观,凸显其中的规律,便于信息的提取和交流.数据的集中趋势和离散程度的估计【例3】 甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84乙 92 95 80 75 83 80 90 85(1)求甲成绩的80%分位数;5
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?[解] (1)把甲的成绩按照从小到大的顺序排列可得:78 79 81 82 84 88 93 95因为一共有8个数据,所以8×80%=6.4,不是整数,所以甲成绩的80%分位数是第7个数据93.(2)甲=(78+79+81+82+84+88+93+95)=85,乙=(75+80+80+83+85+90+92+95)=85.s=[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s=[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∵甲=乙,s