9.1 随机抽样9.1.1 简单随机抽样学习目标核心素养1.通过实例,了解简单随机抽样的含义及其解决问题的过程.(重点)2.掌握两种简单随机抽样方法:抽签法和随机数法.(重点、难点)通过对简单随机抽样的概念和应用的学习,培养学生数学数据分析素养.1.全面调查和抽样调查调查方式普查抽查调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查方法,称为抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:我们把从总体中抽取的那部分个体称为样本.样本量:样本中包含的个体的数量称为样本量2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,9
如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样简单随机抽样:放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以使卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.4.随机数法(1)定义:先把总体中的个体编号,用随机数根据产生与总体中个体数量相等的整数随机数,把产生的随机数作为抽中的编号,并剔除重复的编号,直到抽足样本所需要的个体数.(2)产生随机数的方法:①用随机试验生成随机数,②用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,YN,则为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Yk,其中Yi出现的频数fi(i=1,2,…,k),则总体均值还可以写成加权平均数的形式=.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,yn,则称=.思考1:9
采用抽签法抽取样本时,为什么将编号写在外观、质地等无差别的小纸片(也可以使卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌?[提示] 为了使每个号签被抽取的可能性相等,保证抽样的公平性.思考2:抽签法有什么优点和缺点?[提示] (1)优点:简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.(2)缺点:仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平.1.使用简单随机抽样从1000件产品中抽出50件进行某项检查,合适的抽样方法是( )A.抽签法 B.随机数法C.随机抽样法D.以上都不对B [由于总体相对较大,样本容量较小,故采用随机数法较为合适.]2.下面抽样方法是简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)D [A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中,一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.]3.用抽签法抽取的一个容量为5的样本,它们的变量值分别为2,4,5,7,9,则该样本的平均数为( )A.4.5 B.4.8 C.5.4 D.6C [==5.4.]9
简单随机抽样的判断【例1】 下列5个抽样中,简单随机抽样的个数是( )①一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某班从50名同学中,选出5名数学成绩最优秀的同学代表本班参加数学竞赛;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.A.0 B.1 C.2 D.3B [根据简单随机抽样的特点逐个判断.①不是简单随机抽样.因为一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件它不是“逐个”抽取.②不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样.因为5名同学是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,等可能的抽样.综上,只有④是简单随机抽样.]简单随机抽样必须具备的特点(1)被抽取样本的总体中的个体数N是有限的;(2)抽取的样本是从总体中逐个抽取的;(3)简单随机抽样是一种等可能的抽样.如果三个特征有一个不满足,就不是简单随机抽样.9
1.为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾,这种抽查是( )A.简单随机抽样 B.抽签法C.随机数法D.以上都不对D [由于不知道总体的情况(包括总体个数),因此不属于简单随机抽样.]抽签法的应用【例2】 从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.[解] 第一步,将20架钢琴编号,号码是01,02,…,20.第二步,将号码分别写在外观、质地等无差别的小纸片上作为号签.第三步,将小纸片放入一个不透明的盒里,充分搅匀.第四步,从盒中不放回地逐个抽取5个号签,使与号签上编号相同的钢琴进入样本.1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.2.应用抽签法时应注意的问题:(1)编号时,如果已有编号可不必重新编号;(2)号签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)根据实际需要采用有放回或无放回抽取.2.为迎接2022年北京冬奥会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.[解] (1)将30名志愿者编号,号码分别是01,02,…,30;(2)将号码分别写在外观、质地等无差别的小纸片上作为号签.(3)将小纸片放入一个不透明的盒里,充分搅匀.9
(4)从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.随机数法及其综合应用[探究问题]1.某工厂有2000名工人,从中选取20人参加职工代表大会,采用简单随机抽样方法进行抽样,是用抽签法还是随机数法?为什么?[提示] 采用随机数法,因为工人人数较大,制作号签比较麻烦,所以决定用随机数法.2.某工厂的质检人员采用随机数法对生产的100件产品进行检查,若抽取10件进行检查,应如何对100件产品编号?[提示] 可对这100件产品编号为:001,002,003,…,100.【例3】 某市质监局要检查某公司某个时间段生产的500克袋装牛奶的质量是否达标,现从500袋牛奶中抽取10袋进行检验,(1)利用随机数法抽取样本时,应如何操作?(2)如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.(3)质监局对该公司生产的袋装牛奶检验的质量指标有两个:一是每袋牛奶的质量满足500±5g,二是10袋质量的平均数≥500g,同时满足这两个指标,才认为公司生产的牛奶为合格,否则为不合格.经过检测得到10袋袋装牛奶的质量(单位:g)为:502,500,499,497,503,499,501,500,498,499.计算这个样本的平均数,并按照以上标准判断牛奶质量是否合格.[解] (1)第一步,将500袋牛奶编号为001,002,…,500.第二步,用随机数工具产生1~500范围内的随机数.9
第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本.第四步,重复上述过程,直到产生不同的编号等于样本所需要的数量.(2)应抽取的袋装牛奶的编号为:162,277,354,384,263,491,175,331,455,068.(3)==499.8<500,所以该公司的牛奶质量不合格.1.该公司对质监部门的这种检验方法并不认可,公司自己质检部门抽取了100袋牛奶按照本例(3)检验标准,统计得到这100袋袋装牛奶的质量都满足500±5g,平均数为500.4g,你认为质监局和公司的检验结果哪一个更可靠?为什么?[解] 该公司的质检部门的检验结果更可靠.因为质监局抽取的样本较少,不能很好地反映总体,该公司的质检部门抽取的样本量较大,一般来说,样本量大的会好于样本量小的.尤其是样本量不大时,增加样本量可以较好地提高估计的效果.2.为进一步加强公司生产牛奶的质量,规定袋装牛奶的质量变量值为Yi=,公司质监部门又抽取了一个容量为50的样本,其质量变量值如下:11101111001010101010111101011100010101001001010101据此估计该公司生产的袋装牛奶质量不低于500g的比例.[解] 由样本观测数据,计算可得样本平均数为=0.56,据此估计该公司生产的袋装牛奶质量不低于500g的比例约为0.56.随机数法的注意点(1)当总体容量较大,样本容量不大时,可用随机数法抽取样本.(2)用随机数法抽取样本,为了方便,在编号时需统一编号的位数.(3)掌握利用信息技术产生随机数的方法和规则.9
1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:总体有限、逐个抽取、无放回抽取、等可能抽取.2.一个抽样试验能否用抽签法,关键看总体和样本的容量是否较少.1.判断正误(1)抽签法和随机数法都适用于总体容量和样本容量较小时的抽样.( )(2)利用随机数法抽取样本时,选定的初始数是任意的,但读数的方向只能是从左向右读.( )(3)利用随机数法抽取样本时,若一共有总体容量为100,则给每个个体分别编号为1,2,3,…,100.( )[提示] (1)正确.(2)错误.读数的方向也是任意的.(3)错误.应编号为00,01,02,…,99.[答案] (1)√ (2)× (3)×2.抽签法确保样本代表性的关键是( )A.制签 B.搅拌均匀C.逐一抽取D.抽取不放回B [若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.]3.在总体为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N的值为.120 [据题意=0.25,故N=120.]4.某大学要去贫困地区参加支教活动,需要从每班选10名男生,8名女生参加,某班有男生32名,女生28名,试用抽签法确定该班参加支教活动的同学.9
[解] 第一步,将32名男生从0到31进行编号.第二步,用相同的小纸片制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加支教活动.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加支教活动.9