人教版高中数学必修第二册6.1《平面向量的概念》课件(共27张) (含答案)
加入VIP免费下载

人教版高中数学必修第二册6.1《平面向量的概念》课件(共27张) (含答案)

ID:1227330

大小:749 KB

页数:26页

时间:2022-08-16

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
人教2019A版必修第二册第六章 平面向量及其应用 情境引入老鼠为什么认为猫是“傻猫”?结论:猫的速度再快也没用,因为方向错了。速度是既有大小又有方向的量50m/s10m/s傻猫 力速度质量问题:请观察这三个物理中的量有什么区别?力、速度:既有大小又有方向的量.(矢量)(2)(1)(3)质量:只有大小.(标量) OBA湖面上有三个景点O,A,B,一游艇将游客从景点O送至景点A,半小时后,游艇再将游客送至景点B.1.在物理中,位移与路程是同一个概念吗?为什么?一.向量的实际背景与概念2.物体受到的重力、物体在液体中受到的浮力,被拉长或压缩的弹簧的弹力…力是常见的物理量,也是既有大小又有方向的量.GFF (1)向量与数量既有大小,又有方向的量叫做向量(物理学中称为矢量);只有大小,没有方向的量叫做数量(物理学中称为标量).注意:数量只有大小,是一个代数量,可以进行代数运算、能比较大小;向量具有大小和方向这双重要素,由于方向不能比较大小,故向量不能比较大小.练习下列量不是向量的是()①质量②速度③位移④力⑤加速度⑥面积⑦年龄⑧身高 二.向量的几何表示探究:由于实数与数轴上的点一一对应,数量常常用数轴上的一个点表示,那么,怎么表示向量呢? 有向线段定义在线段AB的两个端点中,规定一个顺序,假设A为起点,B为终点,就说线段AB具有方向,具有方向的线段叫做有向线段.A(起点)B(终点)如图,以A为起点、B为终点的有向线段记作.线段AB的长度也叫做有向线段的长度,记作.箭头所指的方向表示有向线段的方向. 思考:一条有向线段由哪几个基本要素所确定?有向线段的三个要素:起点、方向、长度.有向线段使向量的“方向”得到了表示,而线段的长度可表示向量的大小,这样我们就可用有向线段表示向量. (2)向量的几何表示AB——用有向线段表示.画图时,我们常用有向线段来表示向量,线段按一定比例(标度)画出.其中有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. (3)向量的表示方法:一般可用表示向量的有向线段的起点和终点字母表示,如若表示向量的有向线段没有标注起点和终点字母,向量也可用黑体字母a,b,c,…(书写时用注意用表示).AB 1.向量:与起点无关.用有向线段表示向量时,起点可以取任意位置.数学中的向量也叫自由向量.注:2.有向线段与向量的区别:有向线段:三要素:起点、大小、方向向量:可选任意点作为向量的起点、有大小、有方向ABCDABCD有向线段AB、CD是不同的。向量AB、CD是同一个向量。 向量的大小,就是向量的长度(或称模),记作,或者记作.(4)向量的模思考:向量的模可以为0吗?可以为1吗?可以为负数吗?零向量:长度为0的向量,记作.单位向量:长度等于1个单位的向量. 说明:零向量、单位向量的定义都是只限制大小,不确定方向.故零向量的方向是任意的,单位向量的方向具体而定.注意:向量是不能比较大小的,但向量的模(是正数或零)是可以进行大小比较的.有意义没有意义 比例1:8000000解:AB表示A地至B地的位移;AC表示A地至C地的位移.例1在图中,分别用向量表示A地至B、C两地的位移,并根据图中的比例尺,并求出A地至B、C两地的实际距离(精确到1km). 模相等,方向相同;模相等,方向不相同;模不相等,方向相同;模不相等,方向不相同;思考1:向量由其模和方向所确定.对于两个向量,就其模等与不等,方向同与不同而言,有哪几种可能情形?三.相等向量与共线向量 规定:零向量与任一向量平行(1)平行向量:方向相同或相反的非零向量.向量与平行,记作 (2).相等向量长度相等且方向相同的向量叫相等向量2.零向量与零向量相等3.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关。abca=b=cA1B1=A2B2=A3B3=A4B4A1B1A2B2A3B3A4B4注:1.若向量相等,则记为; (3).共线向量:任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量。共线向量一定要在同一条直线上吗?OABc一切向量都可以在不改变它大小和方向的前提下,将它平移到任何位置。 小试牛刀填空(1)平行向量是否一定方向相同?()(2)不相等的向量是否一定不平行()(3)与零向量相等的向量必定是什么向量?()(4)与任意向量都平行的向量是什么向量?()(5)若两个向量在同一直线上,则这两个向量一定是什么向量?()(6)两个非零向量相等的当且仅当什么?()(7)共线向量一定在同一直线上吗?()不一定不一定零向量平行向量长度相等且方向相同不一定零向量 OA=DO=CB例2.如图,设O是正六边形ABCDEF的中心,(1)写出图中的共线向量;(2)分别写出图中与向量OA、OB、OC相等的向量.OB=DC=EOOC=AB=ED=FO解:(1)是共线向量;是共线向量;是共线向量;(2) D 定义长度(模)表示有向线段字母表示零向量单位向量向量间的关系相等平行(共线)向量向量的有关概念特殊向量

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料