人教2019A版必修第二册第八章 立体几何初步
2、平面与平面垂直的判定定理1、平面与平面垂直的定义一个平面过另一个平面的垂线,则这两个平面垂直.符号表示:b两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.复习回顾
αβEF思考1如图,长方体中,α⊥β,(1)α里的直线都和β垂直吗?(2)什么情况下α里的直线和β垂直?与AD垂直不一定
思考2垂足为B,那么直线AB与平面β的位置关系如何?为什么?αβABDCE垂直
∵,∴AB⊥BE.又由题意知AB⊥CD,且BECD=B垂足为B.∴AB⊥则∠ABE就是二面角的平面角.证明:在平面内作BE⊥CD,αβABDCE
平面与平面垂直的性质定理符号表示:DCAB两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
(线是一个平面内垂直于两平面交线的一条直线)面面垂直线面垂直作用:①它能判定线面垂直.②它能在一个平面内作与这个平面垂直的垂线.关键点:①线在平面内.②线垂直于交线.DCAB提升总结:
αβAbal解:在α内作垂直于交线的直线b,∵∴∵∴a∥b.又∵∴a∥α.即直线a与平面α平行.
例2.如图,已知PA⊥平面ABC,平面PAB⊥平面PBC,求证:BC⊥平面PAB.EPABCE∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC.故BC⊥平面PAB证明:过点A作AE⊥PB,垂足为E,∵平面PAB⊥平面PBC,平面PAB∩平面PBC=PB,∴AE⊥平面PBC.∵BC平面PBC,∴AE⊥BC
1.在空间中,下列命题正确的是()A.垂直于同一条直线的两直线平行B.平行于同一条直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行解析A项中,垂直于同一条直线的两直线可能平行、异面或相交;B项中,平行于同一条直线的两个平面可能平行或相交;C项中,垂直于同一平面的两个平面可能平行或相交;D项正确.达标检测D
2.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.C
3.如图所示,三棱锥P-ABC中,平面PAB⊥底面ABC,且PA=PB=PC,则△ABC是________三角形.解析设P在平面ABC上的射影为O,∵平面PAB⊥底面ABC,平面PAB∩平面ABC=AB,∴O∈AB.∵PA=PB=PC,∴OA=OB=OC,∴O是△ABC的外心,且是AB的中点,∴△ABC是直角三角形.直角
4.如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2.求证:BF⊥平面ACFD.
证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,平面BCFE∩平面ABC=BC,且AC⊥BC,AC⊂平面ABC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.又CK∩AC=C,CK,AC⊂平面ACFD,所以BF⊥平面ACFD.
1、平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。2、证明线面垂直的两种方法:线线垂直→线面垂直;面面垂直→线面垂直3、线线、线面、面面之间的关系的转化是解决空间图形问题的重要思想方法。小结线面垂直面面垂直线线垂直面面垂直线面垂直线线垂直