人教2019版必修第一册第十章概率章末总结
知识系统整合
专题突破融会贯通
答案B
例22019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
解析(1)由已知,老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=.
应用互斥事件的概率的加法公式解题时,一定要注意首先确定各个事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.对于较复杂事件的概率,可以转化为求对立事件的概率.求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,若A与B互为对立事件,则利用公式P(A)=1-P(B)求解.
例3从四双不同的鞋中任意摸出4只,事件“4只全部成对”的对立事件是()A.至多有两只不成对B.恰有两只不成对C.4只全部不成对D.至少有两只不成对解析从四双不同的鞋中任意摸出4只,可能的结果为“恰有2只成对”,“4只全部成对”,“4只都不成对”,∴事件“4只全部成对”的对立事件是“恰有2只成对”与“4只都不成对”的并事件“至少有两只不成对”,故选D.答案D
求相互独立事件同时发生的概率的主要方法(1)利用相互独立事件的概率乘法公式直接求解.(2)正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.
例5甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是___________.解析前五场中有一场客场输时,甲队以4∶1获胜的概率是0.63×0.5×0.5×2=0.108;前五场中有一场主场输时,甲队以4∶1获胜的概率是0.4×0.6×2×0.52×0.6=0.072.综上所述,甲队以4∶1获胜的概率是0.108+0.072=0.18.答案0.18
例6某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.