人教2019版必修第二册第八章立体几何初步8.2立体图形的直观图
课程目标1.掌握斜二测画法画水平设置的平面图形的直观图.2.通过观察和类比,利用斜二测画法画出空间几何体的直观图.
数学学科素养1.数学抽象:斜二测画法的理解;2.数学运算:与直观图还原的有关计算;3.数学建模:画平面几何和空间几何体的直观图.
自主预习,回答问题阅读课本107-111页,思考并完成以下问题1.画平面图形的直观图的步骤是什么?2.画简单几何体的直观图的步骤是什么?3.水平放置的平面图形的直观图的斜二测画法有哪些规则?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
知识清单
小试牛刀
题型分析举一反三例1用斜二测画法画水平放置的正六边形的直观图.
解题技巧(画水平放置的平面图形的直观图的注意事项)在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点落在坐标轴上,以便于画点.原图中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来作出其对应线段.
1.画边长为1cm的正三角形的水平放置的直观图.解析(1)如图所示,以BC边所在直线为x轴,以BC边上的高线AO所在直线为y轴,再画对应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.【跟踪训练1】
解析(1)画轴.如图①所示,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.
例3已知圆柱底面半径为1cm,侧面母线长为3cm的圆柱的直观图.解析(1)画轴.如图所示,画x轴、z轴,使∠xOz=90°.(2)画下底面.在x轴上取A,B两点,使OA=OB=1cm.选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱的下底面.(3)画上底面.在Oz上截取点O′,使OO′=3cm,过O′作Ox的平行线O′x′,类似圆柱下底面的作法作出圆柱的上底面.(4)成图.连接AA′,BB′,整理得到圆柱的直观图.
解题技巧(画空间几何体的直观图的注意事项)(1)首先在原几何体上建立空间直角坐标系Oxyz,并且把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面,再作z′轴与平面x′O′y′垂直.(2)作空间图形的直观图时平行于x轴的线段画成平行于x′轴的线段并且长度不变.(3)平行于y轴的线段画成平行于y′轴的线段,且线段长度画成原来的一半.(4)平行于z轴的线段画成平行于z′轴的线段并且长度不变.
【跟踪训练2】1.用斜二测画法画一个底面边长为4cm,高为6cm的正六棱柱(底面为正六边形,侧面为矩形的棱柱)的直观图.解析(1)画轴:画x′轴、y′轴、z′轴,记坐标原点为O,如图①所示.(2)画底面:按x′轴、y′轴画边长为4cm的正六边形的直观图ABCDEF.
(3)画侧棱:过A,B,C,D,E,F各点分别作z′轴的平行线,并在这些平行线上截取AA′、BB′、CC′、DD′、EE′、FF′,使它们都等于6cm.(4)成图:顺次连接A′、B′、C′、D′、E′、F′,并加以整理(去掉辅助线,并将被遮住的部分改为虚线),就得到正六棱柱的直观图,如图②所示.
2.一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3cm,高为4cm,圆锥的高为3cm,画出此几何体的直观图.
解析(1)画轴.如图1所示,画x轴、z轴,使∠xOz=90°.(2)画圆柱的两底面.在x轴上取A,B两点,使AB的长度等于3cm,且OA=OB.选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱的下底面.在Oz上截取点O′,使OO′=4cm,过O′作Ox的平行线O′x′,类似圆柱下底面的作法作出圆柱的上底面.(3)画圆锥的顶点.在Oz上截取点P,使PO′等于圆锥的高3cm.(4)成图.连接A′A,B′B,PA′,PB′,整理得到此几何体的直观图,如图2所示.
解析将直观图还原为原图形,如图所示,可知原图形为平行四边形,且AO⊥BO.又OA=O′A′=1cm,OB=2O′B′=2cm,所以AB==3cm.故原图形的周长为2×(1+3)=8(cm).
解题技巧(直观图还原注意事项)由于斜二测画法中平行于x轴的线段的长度在直观图中长度不变,而平行于y轴的线段在直观图中长度要减半,同时要倾斜45°,因此平面多边形的直观图中的计算需注意两点.(1)直观图中任何一点距x′轴的距离都为原图形中相应点距x轴距离的sin45°=倍.(2)S直观图=S原图.由直观图计算原图形中的量时,注意上述两个结论的转换.
【跟踪训练3】