高中数学人教A版必修2 第三章 直线与方程 3.1.1倾斜角与斜率 课件
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.1.1倾斜角与斜率 课件

ID:1227549

大小:1.12 MB

页数:27页

时间:2022-08-16

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.1.1《直线的倾斜角与斜率》6/27/20211 在平面直角坐标系中,点用坐标表示,直线如何表示呢?问题引入xyOlP(x,y)为了用代数方法研究直线的有关问题,首先探索确定直线位置的几何要素,然后在坐标系中用代数方法把这些几何要素表示出来.问题6/27/20212 对于平面直角坐标系内的一条直线l,它的位置由哪些条件确定?问题引入问题xyOl6/27/20213 我们知道,两点确定一条直线.一点能确定一条直线的位置吗?已知直线l经过点P,直线l的位置能够确定吗?问题引入问题xyOll’l’’P(1)它们都经过点P.(2)它们的‘倾斜程度’不同.6/27/20214 过一点P可以作无数条直线l1,l2,l3,…它们都经过点P(组成一个直线束),这些直线区别在哪里呢?问题引入问题xyOll’l’’P6/27/20215 容易看出,它们的倾斜程度不同.怎样描述直线的倾斜程度呢?问题引入问题xyOll’l’’P6/27/20216 当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角(angleofinclination).xyOl当直线l与x轴平行或重合时,规定它的倾斜角为.直线的倾斜角的取值范围为:直线的倾斜角6/27/20217 直线的倾斜程度与倾斜角有什么关系?平面直角坐标系中每一条直线都有确定的倾斜角,倾斜程度不同的直线有不同的倾斜角,度相同的直线其倾斜角相同.倾斜程xyOl已知直线上的一个点不能确定一条直线的位置;同样已知直线的倾斜角α.也不能确定一条直线的位置.但是,直线上的一个点和这条直线的倾斜角可以唯一确定一条直线.直线的倾斜角6/27/20218 确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可.确定直线的要素xyOlP6/27/20219 日常生活中,还有没有表示倾斜程度的量?前进量升高量问题引入问题6/27/202110 问题引入问题前进升高例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度(比)6/27/202111 斜率通常用小写字母k表示,即一条直线的倾斜角 的正切值叫做这条直线的斜率(slope).倾斜角是的直线有斜率吗?倾斜角是的直线的斜率不存在.直线的斜率如果使用“倾斜角”这个概念,那么这里的“坡度(比)”实际就是“倾斜角α的正切”.6/27/202112 如:倾斜角时,直线的斜率当为锐角时,如:倾斜角为时,由即这条直线的斜率为直线的斜率倾斜角α不是90°的直线都有斜率,并且倾斜角不同,直线的斜率也不同.因此,可以用斜率表示直线的倾斜程度.6/27/202113 已知直线上两点的坐标,如何计算直线的斜率?两点的斜率公式问题给定两点P1(x1,y1),P2(x2,y2),并且x1≠x2,如何计算直线P1P2的斜率k.6/27/202114 当为锐角时,在直角中设直线P1P2的倾斜角为α(α≠90°),当直线P1P2的方向(即从P1指向P2的方向)向上时,过点P1作x轴的平行线,过点P2作y轴的平行线,两线相交于点Q,于是点Q的坐标为(x2,y1).两点的斜率公式6/27/202115 当为钝角时,在直角中两点的斜率公式6/27/202116 同样,当的方向向上时,也有两点的斜率公式6/27/202117 思考?1、当直线平行于x轴,或与x轴重合时,上述公式还适用吗?为什么?答:成立,因为分子为0,分母不为0,K=06/27/202118 2、当直线平行于y轴,或与y轴重合时,上述公式还适用吗?为什么?思考?答:不成立,因为分母为0。6/27/202119 答:与A、B两点的顺序无关。3、已知直线上两点、,运用上述公式计算直线AB的斜率时,与A、B的顺序有关吗?思考?6/27/202120 当直线与轴平行或重合时,上述式子还成立吗?为什么?经过两点的直线的斜率公式为:思考成立两点的斜率公式6/27/202121 归纳:对于斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角=90o,直线与x轴垂直;(2)k与P1、P2的顺序无关,即y1,y2和x1,x2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y1=y2时,斜率k=0,直线的倾斜角=0o,直线与x轴平行或重合.6/27/202122 例1如图,已知,求直线AB,BC,CA的斜率,并判断这些直线的倾斜角是锐角还是钝角.解:直线AB的斜率直线BC的斜率直线CA的斜率由及知,直线AB与CA的倾斜角均为锐角;由知,直线BC的倾斜角为钝角.典型例题6/27/202123 例2在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线及.即解:取上某一点为的坐标是,根据斜率公式有:设,则,于是的坐标是.过原点及的直线即为.xy是过原点及的直线,是过原点及的直线,是过原点及的直线.典型例题6/27/202124 例3.已知三点A(a,2)、B(5,1)、C(-4,2a)在同一直线上,求a的值.典型例题6/27/202125 解:如图,直线的倾斜角=300,直线l2⊥l1,求l1,l2的斜率.练习:6/27/202126 两点间斜率公式知识小结倾斜角斜率作业:课本p89A组1,2,3,4,56/27/202127

10000+的老师在这里下载备课资料