高中数学人教A版必修2 第三章 直线与方程 3.1.1倾斜角与斜率 教案
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.1.1倾斜角与斜率 教案

ID:1227919

大小:55.5 KB

页数:6页

时间:2022-08-16

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
【教案说明】直线的倾斜角与斜率一、教学内容与地位作用解析本节课是新人教版A版高一数学必修(2)的3.1.1节的内容。1、内容分析本节课的主要内容有两个概念(直线的倾斜角、直线的斜率)及一个公式(斜率计算公式)直线的倾斜角是反映直线倾斜方向的量,它也是确定直线位置的一个重要的几何要素,它实质上能从“形”的角度刻画直线的倾斜程度。直线的斜率指倾斜角不是90的直线,其倾斜角的正切值叫做这条直线的斜率。教材是从生活中斜坡的坡度迁移到直线的斜率概念的。直线的斜率可看作是比值,实质上是数值,所以直线的斜率从本质上可看成是从“数”的角度刻画直线的倾斜程度。华罗庚先生说过:“数缺形时少直观,形少数时难入微”。显然,与倾斜角相比,用斜率刻画倾斜程度会更细致。关于过已知两点的直线斜率公式:因为过两点的直线是唯一确定的,所以其倾斜程度也就确定(即直线的斜率也是确定的)。从而在直角坐标系中,直线的斜率与直线上两点的坐标就有密不可分的联系。斜率不仅反映了这种联系,并用代数方法表示了出来,而且在公式的推导中蕴含了分类讨论、数形结合、化归等重要数学思想。2、地位作用分析-6- 本节课是高中解析几何部分的起始课,学生具备的知识基础是在直角坐标系中会用坐标表示点,明确了坐标平面上的点与有序数对可建立一一对应的关系。这节课的教学内容,不仅能反映出数学概念离不开生活,数学是自然有用的,而且蕴含了几何问题代数化的思想,从知识点及研究方法上,为后继判断两条直线的位置关系以及建立直线的方程等内容起着关键性的铺垫作用。二、教学目标解析1、探索确定直线位置的几何要素,感受倾斜角这个反映倾斜程度的几何量的形成过程;2、通过教学,使学生从生活中坡度自然迁移到数学中直线的斜率的过程,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想;3、充分利用倾斜角和斜率是从数与形两方面刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想;4、经历用代数方法刻画直线斜率的过程,初步掌握过已知两点的直线的斜率计算公式,渗透几何问题代数化的解析几何研究思想。三、教学问题诊断分析1、-6- 关于倾斜角的概念:为什么要引入倾斜角?如何描述这个角?这些地方都是教学中易忽略的,也是学生最难理解的地方。直接给出倾斜角的定义,会使学生误认为数学概念就是绝对抽象的,你只要接受就可以了,这样我们就把活生生的、自然的数学演变成高不可攀的,为聪明人准备的学科,会渐渐使许多学生变得被动学习,缺乏数学学习兴趣及自信心。所以,在引入这节课时,应重点让学生感受引入倾斜角的必要性,要描述清楚倾斜角必须规定“基准”与“直线方向”,从而能自然地、准确地描述清楚定义。2、对于斜率,学生基本上能从斜坡的坡度中顺利迁移过来,当倾斜角为90及0时可以特殊认识,当倾斜角为钝角时(与斜坡稍有不同)斜率的求法应重点分析,突出转化思想的同时,引导学生认识P83页的脚注,使学生对所有直线的斜率情况有全面的认识。另外,倾斜角和斜率分别是从“形”与“数”的不同方面刻画直线的倾斜程度,相比较斜率更具有优越性。3、斜率计算公式的得出,学生有两点不易把握。一方面,怎样将两点坐标与相联系;另一方面,图形分析不够全面。对前者,可提供学生探究发现的机会,对后者教师可先让学生在直角坐标系下联想坡度,找升高量与前进量,再引导其转化为坐标表示。公式的推导过程是多数学生能独立解决的,教学中应放手让学生推导并体会数形结合与分类讨论的思想,有助于培养学生研究问题的独立性、条理性、全面性。教学重点:1、感悟并形成倾斜角与斜率两个概念;2、推导并初步掌握过两点的直线斜率公式;3、体会数形结合及分类讨论思想在概念形成及公式推导中的作用。教学难点:用代数方法推导斜率的过程。四、本节课的教学方法:-6- 计算机辅助教学与发现法相结合。即在多媒体课件支持下,让学生在教师引导下,积极探索,亲身经历概念的发现与形成过程,体验公式的推导过程,主动建构自己的认知结构。五、教学过程设计(一)创设情境,揭示课题问题1、给出的两点P、Q相同吗?如何区分这两个点?问题2、过这两点可作什么图形?只经过其中一点(如点P)可作多少条直线?若只想定出其中的一条直线,除了再用一点外,还有其他方法吗?可以增加一个什么几何量?【设计意图】引导学生归纳确定直线位置的几何要素问题3、角的形成还需一条线。即要有刻画倾斜程度的角,就必须还有一条形成角的参照的直线。在平面直角坐标系下,以哪条轴线为基准形成刻画倾斜程度的角?问题4、过点P与x轴形成45角的直线有几条?如何区分这两条直线?选择哪个角来描述直线的倾斜程度,就能保证坐标系下的任何一条直线都有唯一的角与它对应呢?【设计意图】倾斜角的形成离不开“基准”与“直线方向”的规定,同时让学生感受数学概念是自然的以及数学定义的统一美与简洁美,从而提示本节课的课题。〖学生练习〗画出过一点的各类倾斜角的直线,并完善倾斜角的定义。(二)巩固旧知,同化新知-6- 根据学生的生活经验,将坡度自然迁移到斜率的概念上,通过坡角(倾斜角)的变化,感受斜率的变化,使学生认识到数学概念是亲切的,激发其求知欲。问题5:生活中坡角没钝角,当为钝角时,直线的斜率如何求?【设计意图】使学生会用转化思想求为钝角时的斜率,明确课本脚注的用法。问题6、当在[0,180)内变化时,斜率k如何变化?【设计意图】更条理、更全面地认识斜率与倾斜角的变化关系。问题7、倾斜角与斜率都能刻画直线的倾斜程度,哪个量更优越呢?【设计意图】突出斜率刻画倾斜程度的优越性是更细致入微,使用方便简洁。(三)尝试推导,深化认识两点确定唯一一条直线,可见由两点也就确定了直线的倾斜程度,即倾斜角与斜率。看来,直线上两点与直线的斜率有着密不可分的联系。问题8、在平面直角坐标系中,已知直线上两点:P1(x1,y1),P2(x2,y2)且x1x2,能否用P1、P2的坐标来表示直线斜率k?(学生活动):在坐标系下画两点P1、P2及直线P1P2,探究各种图形并尝试推导。教师可适当引导其将斜坡截面图迁移到坐标系中,类似升高量与前进量,用点的坐标表示线段长,请同学叙述各个图的推导过程与结果。【设计意图】给学生提供充分的自主探索的时间与空间,克服公式推导中不易把握的两点(1、两点坐标与-6- 的联系;2、图形分析不全面),培养数形结合与分类讨论的思想,促进思维的独立性、全面性,逻辑性。思考:1、各种情形得出的结论一致吗?与两点坐标顺序有关系吗?2、当直线垂直于x轴或y轴时,上述结果适用吗?3、斜率公式使用时应注意什么问题?【设计意图】熟悉公式的结构特征及适用范围。(四)反思小结,概括提炼(同学们这节课有何收获?)1、明确了确定直线位置的几何要素。2、理解了刻画倾斜程度的量(倾斜角与斜率),知道了求斜率的两种方法(定义法、坐标法)3、经历了代数方法刻画斜率的过程,感受了数形结合与分类讨论的数学思想六、预期效果分析1、两个概念的形成,估计通过问题情境的设置,学生能达到预期的教学目标,而且这样设计之后,概念得出是自然的,不是强加于人的。2、斜率公式的推导可能存在学生对图形考虑不全面的问题,需要教师适当进行引导。-6-

10000+的老师在这里下载备课资料