高中数学3.1.2两条直线平行与垂直的判定教学案 新人教A版必修2
加入VIP免费下载

高中数学3.1.2两条直线平行与垂直的判定教学案 新人教A版必修2

ID:1228110

大小:47 KB

页数:2页

时间:2022-08-16

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第三章 直线与方程3.1 直线的倾斜角与斜率3.1.2 两条直线平行与垂直的判定学习目标1.掌握两条直线的位置关系;2.能根据斜率判定两条直线平行或垂直;3.通过本节课的学习,体验用斜率研究直线的一般思路,并体会数形结合思想和化归转化思想.自主学习一、设计问题,创设情境问题1:倾斜角和斜率是描述直线的什么特征的?它们又有哪些联系和区别?问题2:平面内两条直线有哪些位置关系?你学习过这些位置关系的判定和性质吗?这些判定体现了用什么研究直线?问题3:能不能用数来研究两直线的位置关系呢?为什么?合作探究问题4:怎样用直线的斜率来研究两直线的位置关系呢?请同学们自己来探究一下如何用斜率来研究两直线平行.问题5:你能用研究两直线平行的判定的策略探究一下两直线垂直的判定吗?要用斜率研究两直线的垂直关系,应该先探究直线的什么特征具有的规律?请大家探究一下,两直线垂直时,它们的倾斜角应该具备的关系.课堂练习1.已知点A(0,0),B(2,4),C(6,2),D(4,-2).(1)试判断直线AB与直线CD的位置关系;(2)试判断直线AB与直线AD的位置关系;(3)试判断四边形ABCD的形状;(4)设点E(3,1),判断点A,E,C是否共线.2.已知平行四边形ABCD中,点A(0,0),B(2,4),D(4,-2),求顶点C的坐标. 反思小结问题6:今后的学习中我们可以怎样判断直线的位置关系?具体运用时,注意什么问题?问题7:用斜率来判定两直线的平行与垂直,这体现了什么思想?问题8:通过这节课的学习,你还有哪些收获?课后作业课本89页,习题3.1A组6,7.;B组第1,2,3,4,5,6题.参考答案自主学习问题1:都是描述直线的倾斜程度,或者说直线的方向.倾斜角是几何图形,而斜率是数.斜率k是倾斜角α(α≠90°)的正切值,即k=tanα.问题2:平行、相交(垂直).这些判定是用同位角、内错角、同旁内角之间的关系以及90°的角等来研究直线的位置关系,总而言之是用角来研究两直线的位置关系的.问题3:能,因为斜率确定了直线的方向,而两直线的方向决定了两直线的位置关系.合作探究1.两直线平行的判定问题4:l1∥l2⇔α1=α2⇔k1=k2或直线l1和l2的斜率都不存在.2.两直线垂直的判定问题5:能,应先探究两直线垂直时,它们的倾斜角具有的规律.l1⊥l2⇔α2=α1+90°⇔k1k2=-1或两条直线中或一条直线斜率为0,另一条直线斜率不存在.课堂练习1.解:(1)因为kAB=2,kCD=2,所以直线AB和直线CD平行或共线,又kAC=≠2,所以直线AB和直线CD平行.(2)因为kAD=-,所以kABkAD=-1,所以直线AB与直线AD垂直.(3)因为kBC=-,由(1)(2)可知,四边形ABCD是矩形.(4)因为kAE==kAC,且有公共点A,所以点A、E、C共线.2.解:设点C的坐标为(x,y),因为四边形ABCD是平行四边形,所以AB∥CD,AD∥BC,所以kAB=kCD,kAD=kBC,故,且,解得x=6,y=2,所以顶点C的坐标为(6,2).反思小结问题6:用斜率来判定,运用时应考虑斜率是否存在,若不确定,应该分类讨论.问题7:数形结合思想.问题8:分析问题要考虑全面,解决问题时要始终带着目标.通过合作交流,可以使我们的眼界更宽,思维更灵活,效率更高!

10000+的老师在这里下载备课资料