2022年人教A版高中数学必修二3.1.2《两条直线平行与垂直的判定》教案
加入VIP免费下载

2022年人教A版高中数学必修二3.1.2《两条直线平行与垂直的判定》教案

ID:1228267

大小:2.91 MB

页数:59页

时间:2022-08-16

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.1.2两条直线平行与垂直的判定【教学目标】(1)掌握直线与直线的位置关系。(2)掌握用代数的方法判定直线与直线之间的平行与垂直的方法。【教学重点难点】教学重点难点:两条直线的平行与垂直的判定方法又是教学难点。【教学过程】一、引入:问题1:平面内两条直线的位置关系问题2:两条直线的平行和直线的倾斜角和斜率之间的关系二、新课问题探究1:(1)、如何判定两条不重合直线的平行?(2)、当两条直线斜率不存在,位置关系如何?(3)、直线l1和直线l2的斜率k1=k2,两条直线可能重合的情况下:两条直线位置关系怎样?总结归纳直线与直线平行的判定方法例题1(课本87页的例题3)解答过程见课本变式:判断下列各小题中的直线与是否平行。(1)经过点A(-1,-2),B(2,1),经过点M(3,4),N(-1,-1)答案:不平行(2)经过点A(0,1),B(1,0),经过点M(-1,3),N(2,0) 答案:平行例题2(课本87页的例题4)解答过程见课本变式:判断下列各小题中的直线与是否垂直。(1)经过点A(-1,-2),B(1,2),经过点M(-2,-1),N(2,1)答案:不垂直(2)经过点A(3,4),B(3,100),经过点M(-10,40),N(10,40)答案:垂直问题探究2(1)、如何利用直线的斜率判定两条直线的垂直?(2)、两条垂直的直线斜率有怎样的关系?总结直线与直线垂直的判定方法:例题3(课本87页的例题5)解答过程见课本变式:已知点A(-2,-5),B(6,6),点P在轴上,且,试求点P的坐标。分析:利用两直线的条件建立点p的坐标满足的方程与关系式。答案;P的坐标为(0,-6)或(0,7)。过程略例题4(课本87页的例题6)解答过程见课本变式:已知定点A(-1,3),B(4,2),以A、B为直径的端点,作圆与轴有交点C,求交点C的坐标。分析:本题中有三个点A、B、C,由于AB为直径,C为圆上的点,所以,因此,必有,列出方程,求解即可。答案:C(1,0)或(2,0)。过程略例5(创新应用)[来源:学.科.网Z.X.X.K]已知一直线恒过定点A(2,1),直线外有一点B(3,-2),问当直线的斜率为多少时,点B(3,-2)到直线的距离最大?最大距离是多少?分析:结合图形观察直线绕点A转动时,点B到直线距离的变化答案:当=时,最大距离为。过程略变式:已知定点A(0,1),点B在直线上运动,当线段AB最短时,点B的坐标是__________ 答案:()。过程略归纳总结1、两条直线平行的判定程序:(1)斜率存在的情况(2)直线斜率不存在的情况2、两条直线垂直的判定程序:(1)斜率存在的情况(2)直线斜率不存在的情况三、达标检测1、练习:教材89页练习第1题2、练习:教材89页练习第2题3、课本89页习题3.1A组6,7【板书设计】一、两直线平行的判定二、两直线垂直的判定三、综合应用【作业布置】课后作业与提高3.1.2两条直线平行与垂直的判定课前预习导学案一、预习目标(1)知道直线的位置关系(2)初步明确直线的平行与垂直的判定二、预习内容(1)平面内两条直线的位置关系(2)两条直线的平行和直线的倾斜角和斜率之间的关系(3)在坐标系中画出下列各组直线,判断他们的位置关系。并求出他们的斜率,试发现:直线的斜率与直线的位置关系之间的联系。①② ③④三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容[来源:学。科。网Z。X。X。K]课内探究导学案一、学习目标(1)明确直线平行于垂直的条件。(2)利用直线的平行与垂直解决有关问题。学习重点难点:两条直线的平行与垂直的判定方法。二、学习过程1、直线平行的判定方法问题探究1:(1)、如何判定两条不重合直线的平行?(2)、当两条直线斜率不存在,位置关系如何?(3)、直线l1和直线l2的斜率k1=k2,两条直线可能重合的情况下:两条直线位置关系怎样?总结归纳直线与直线平行的判定方法 应用例题1(课本87页的例题3)变式:判断下列各小题中的直线与是否平行。(1)经过点A(-1,-2),B(2,1),经过点M(3,4),N(-1,-1)(2)经过点A(0,1),B(1,0),经过点M(-1,3),N(2,0)例题2(课本87页的例题4)变式:判断下列各小题中的直线与是否平行。(1)经过点A(-1,-2),B(1,2),经过点M(-2,-1),N(2,1)(2)经过点A(3,4),B(3,100),经过点M(-10,40),N(10,40)2、直线垂直的判定方法(1)、如何利用直线的斜率判定两条直线的垂直?(2)、两条垂直的直线斜率有怎样的关系?总结直线与直线垂直的判定方法:例题3(课本87页的例题5)变式:已知点A(-2,-5),B(6,6),点P在轴上,且,试求点P的坐标。分析:利用两直线的条件建立点p的坐标满足的方程与关系式。例题4(课本87页的例题6) 变式:已知定点A(-1,3),B(4,2),以A、B为直径的端点,作圆与轴有交点C,求交点C的坐标。例5(创新应用)已知一直线恒过定点A(2,1),直线外有一点B(3,-2),问当直线的斜率为多少时,点B(3,-2)到直线的距离最大?最大距离是多少?分析:结合图形观察直线绕点A转动时,点B到直线距离的变化变式:已知定点A(0,1),点B在直线上运动,当线段AB最短时,点B的坐标是__________当堂达标检测:1、练习:教材89页练习第1题2、练习:教材89页练习第2题3、课本89页习题3.1A组6,7课后巩固练习与提高1、有如下几种说法:①若直线,都有斜率且斜率相等,则//;②若直线,则他们的斜率之积为-1③两条直线的倾斜角的正弦值相等,则两直线平行。以上三种说法中,正确的个数是()A、1B、2C、3D、02、顺次连接A(-4,3),B(2,5),C(6,3),D(-3,1)四点所组成的图形是()A、平行四边形B、直角梯形C等腰梯形D以上都不对 3、若过点P(1,4)和Q(a,2a+2)的直线与直线平行,则a的值是()A、1B、-1CD4、已知直线的斜率为3,直线经过点A(1,2),B(2,a).若直线//,则a=______;若,则a=______5、已知A(1,-1),B(2,2),C(3,0)三点,求点D使CDAB且CB//AD3.2.1直线的点斜式方程【教学目标】(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。(3)体会直线的斜截式方程与一次函数的关系.【教学重难点】重点:直线的点斜式方程和斜截式方程。难点:直线的点斜式方程和斜截式方程的应用。 【教学过程】(一)情景导入、展示目标1.情境1:过定点P(x0,y0)的直线有多少条?倾斜角为定值的直线有多少条?学生思考、讨论。(二)预习检查、交流展示检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。(三)合作探究、精讲精炼。问题1:确定一条直线需要几个独立的条件?学生可能的回答:(1)两个点P1(x1,y1),P2(x2,y2);(2)一个点和直线的斜率(可能有学生回答倾斜角);(3)斜率和直线在y轴上的截距(说明斜率存在);(4)直线在x轴和y轴上的截距(学生没有学过直线在x轴上的截距,可类比,同时强调截距均不能为0)。问题2:给出两个独立的条件,例如:一个点P1(2,4)和斜率k=2就能决定一条直线l。(1)你能在直线l上再找一点,并写出它的坐标吗?你是如何找的?(2)这条直线上的任意一点P(x,y)的坐标x,y满足什么特征呢?直线上的任意一点P(x,y)(除P1点外)和P1(x1,y1)的连线的斜率是一个不变量,即为k,即:k=,即y-y1=k(x-x1) 学生在讨论的过程中:(1)强调P(x,y)的任意性。(2)不直接提出直线方程的概念,而用一种通俗的,学生易于理解的语言先求出方程,可能学生更容易接受,也更愿意参与。问题3:(1)P1(x1,y1)的坐标满足方程吗?(2)直线上任意一点的坐标与此方程有什么关系?教师指出,直线上任意一点的坐标都是这个方程的解;反过来,以这个方程的解为坐标的点都在此直线上。让学生感受直线的方程和方程的直线的意义。如此,我们得到了关于x,y的一个二元一次方程。这个方程由直线上一点和直线的斜率确定,今后称其为直线的点斜式方程。设点P(x,y)是直线l上不同于P1的任意一点根据经过两点的直线斜率公式,得由直线上一点和直线的斜率确定的直线方程,叫直线的点斜式方程。讨论:直线的点斜式方程能否表示平面上的所有直线?(引导学生从斜率的角度去考虑)结论:不能表示垂直于轴的直线.(1)轴所在直线的方程是什么?轴所在直线的方程是什么?(2)经过点且平行于轴(即垂直于轴)的直线方程是什么?(3)经过点且平行于轴(即垂直于轴)的直线方程是什么?[来源:高考学习网XK] ①当直线的倾斜角为0°时,tan0°=0,即k=0,这时直线与x轴平行或重合,直线l的方程就是y-y0=0或y=y0②当直线l的倾斜角为90°时,直线没有斜率,这时直线l与y轴平行或重合,它的方程不能用点斜式表示,这时直线上每一点的横坐标都等于x0,所以它的方程为x-x0=0或x=x0例1.一条直线经过点P1(-2,3),斜率为2,求这条直线的方程。分析:应用点斜式方程解:由直线的点斜式方程得y-3=2(x+2),即2x-y+7=0.点评:寻找点斜式的条件,然后直接用变式1:在例1中,若将“斜率为2”改为“倾斜角为45o”,求这条直线的方程;变式2:在例1中,若将直线的倾斜角改为90o,这条直线的方程是什么?例2.已知直线l的斜率为k,与y轴的交点是P(0,b),求直线l的方程。分析:同例1,直接用解:根据直线的点斜式方程,得直线l的方程为y-b=k(x-0),即y=kx+b.点评:介绍截距和斜截式方程的概念。由点斜式方程可知,若直线过点且斜率为,则直线的方程为: 方程称为直线的斜截式方程.简称斜截式.其中为直线在轴上的截距.变式:(1)斜率是5,在y轴上的截距是4的直线方程。解:由已知得k=5,b=4,代入斜截式方程y=5x+42.思考情境2:P76,用计算机在同一直角坐标系中分别作出直线y=2,y=x+2,y=-x+2,y=3x+2,y=-3x+2的图象。问题4:直线y=kx+2有什么特点?学生观察、归纳、发现:直线y=kx+2过定点(0,2),随着k的变化,直线绕点(0,2)作旋转运动。用几何画板演示。情境3:用计算机在同一直角坐标系中分别作出直线y=2x,y=2x+1,y=2x-2,y=2x+4,y=-2x-4的图象.问题5:直线y=2x+b有什么特点?学生观察、归纳、发现:直线y=2x+b的方向不变,随着b的变化,直线作平行移动。用几何画板演示。(四)反馈测试导学案当堂检测㈤总结反思、共同提高我们已经学习了直线的点斜式方程,记住它的使用条件。那么,直线方程还有其他形式吗?在下一节课我们一起学习直线方程的其他形式。这节课后大家可以先预习这一部分,并完成本节的课后练习及课后延伸拓展作业。 【板书设计】一、直线的点斜式方程二、探究3个问题三、典例例一例二(学生爬黑板展示变式—)【作业布置】导学案课后练习与提高3.2.1直线的点斜式方程导学案课前预习学案一、预习目标通过预习同学们知道点斜式从斜率公式上进行一般化,变形,得到点斜式方程。什么是截距以及直线的斜截式方程。二、预习内容1、过定点P(x0,y0)的直线有多少条?倾斜角为定值的直线有多少条?2、确定一条直线需要几个独立的条件?学生回答: 3、给出两个独立的条件,例如:一个点P1(2,4)和斜率k=2就能决定一条直线l。(1)你能在直线l上再找一点,并写出它的坐标吗?你是如何找的?(2)这条直线上的任意一点P(x,y)的坐标x,y满足什么特征呢?三、提出疑惑疑惑点疑惑内容课内探究学案一、学习目标(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。(3)体会直线的斜截式方程与一次函数的关系.学习重点:直线的点斜式方程和斜截式方程。学习难点:直线的点斜式方程和斜截式方程的应用。二、学习过程(自主学习、合作探究、精讲点拨、有效训练)问题:(1)P1(x1,y1)的坐标满足方程吗?(2)直线上任意一点的坐标与此方程有什么关系? 讨论:直线的点斜式方程能否表示平面上的所有直线?(引导学生从斜率的角度去考虑)结论:(1)轴所在直线的方程是什么?轴所在直线的方程是什么?(2)经过点且平行于轴(即垂直于轴)的直线方程是什么?(3)经过点且平行于轴(即垂直于轴)的直线方程是什么?例1.一条直线经过点P1(-2,3),斜率为2,求这条直线的方程。解:由直线的点斜式方程得y-3=2(x+2),即2x-y+7=0.变1:在例1中,若将“斜率为2”改为“倾斜角为45o”,求这条直线的方程; 变2:在例1中,若将直线的倾斜角改为90o,这条直线的方程是什么?例2.已知直线l的斜率为k,与y轴的交点是P(0,b),求直线l的方程。解:变式:(1)斜率是5,在y轴上的截距是4的直线方程。解:2.思考情境2:P76,用计算机在同一直角坐标系中分别作出直线y=2,y=x+2,y=-x+2,y=3x+2,y=-3x+2的图象。问题4:直线y=kx+2有什么特点?用几何画板演示。 情境3:用计算机在同一直角坐标系中分别作出直线y=2x,y=2x+1,y=2x-2,y=2x+4,y=-2x-4的图象.问题5:直线y=2x+b有什么特点?反思总结直线的点斜式的所需要的条件,和坐标轴垂直的直线方程是什么。经过特殊化后得到斜截式,它的几何意义是什么。什么是截距。当堂检测1已知直线经过点,斜率为,求直线的点斜式和斜截式.2方程表示过点、斜率是、倾斜角是、在y轴上的截距是的直线。3已知直线的点斜式方程是y+2=(x+1),那么此直线经过定点_______,直线的斜率是______,倾斜角是_______.课后练习与提高(视学生学习情况添加)1经过点(-,2)倾斜角是30度的直线的方程是(A)y+=(x-2)(B)y+2=(x-) (C)y-2=(x+)(D)y-2=(x+)2已知直线方程y-3=(x-4),则这条直线经过的已知点,倾斜角分别是(A)(4,3);π/3(B)(-3,-4);π/6(C)(4,3);π/6(D)(-4,-3);π/33直线方程可表示成点斜式方程的条件是(A)直线的斜率存在(B)直线的斜率不存在(C)直线不过原点(D)不同于上述答案4直线l经过点P0(-2,3),且倾斜角a=45º,求直线l的点斜式方程,并画出直线l.5.已知直线的点斜式方程是y-2=x-1,那么直线的斜率是_____,倾斜角是_____,此直线必过定点______;6已知直线的方程为,求过点且垂直于的直线方程. 3.2.2直线的两点式方程【教学目标】(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。【教学重难点】重点:直线方程两点式。难点:两点式推导过程的理解。【教学过程】(一)情景导入、展示目标。思考1:由一个点和斜率可以确定一条直线,还有别的条件可以确定一条直线吗? 问题:已知直线l过A(3,-5)和B(-2,5),求直线l的方程解:∵直线l过点A(3,-5)和B(-2,5)将A(3,-5),k=-2代入点斜式,得y-(-5)=-2(x-3)即2x+y-1=0(二)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。(三)合作探究、精讲点拨。思考2:设直线l经过两点P1(x1,y1),P2(x2,y2),其中x1≠x2,y1≠y2,则直线l斜率是什么?结合点斜式直线l的方程如何?直线方程的两点式经过直线上两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2)的直线方程叫做直线的两点式方程,简称两点式。 讨论:1、两点式适用范围是什么?答:当直线没有斜率或斜率为0时,不能用2、若点中有,或,此时这两点的直线方程是什么?例1:求过两点的直线的两点式方程,并转化成点斜式.分析:直接代入两点式方程解:点斜式(y-1)=-4(x-2)练习:教材P97面1题例2:已知直线与轴的交点为A(a,0),与轴的交点为B(0,b),其中a≠0,b≠0求的方程 解析:说明(1)直线与x轴的交点(a,0)的横坐标a叫做直线在x轴的截距,此时直线在y轴的截距是b;当直线不经过原点时,其方程可以化为⑵,方程⑵称为直线的截距式方程,其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.点评:截距式适用于横、纵截距都存在且都不为0的直线变式:1.求过点P(2,3),并且在两坐标轴上的截距相等的直线的方程。上题中改为求截距的绝对值相等的直线方程,结果如何?例3:已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2)求BC所在直线的方程,以及该边上中线所在直线的方程。解:将B,C两点代入两点式,得整理,得:5x+3y-6=0,这就是直线BC的方程。设BC的中点为M(x,y),由中点坐标公式,得M(,即M() 中线AM所在的直线方程为:,整理,得:x+13y+5=0点评:其中考察了线段中点坐标公式,非常的常用,引起重视。变式:求过点P(2,3),并且在x轴上的截距是在y轴上的截距2倍的直线的方程。(四)反馈测试导学案当堂检测㈤总结反思、共同提高我们已经学习了直线的两点式方程,那么,直线方程之间的区别与联系是什么?在下一节课我们一起学习直线方程的最后一种形式。这节课后大家可以先预习这一部分,并完成本节的课后练习及课后延伸拓展作业。【板书设计】一、直线的两点式方程的定义,形式二、探究问题三、典例例一例二例三(学生爬黑板展示变式练习) 【作业布置】导学案课后练习与提高3.2.1直线的两点式方程导学案课前预习学案一、预习目标通过预习同学们知道点斜式和两点式之间有很密切的联系,用点斜式来解决两点确定一条直线这个问题。如何得到的呢?特殊化后又得到另一种形式,截距式。明确他们的适用范围?二、预习内容思考1:由一个点和斜率可以确定一条直线,还有别的条件可以确定一条直线吗?问题:已知直线l过A(3,-5)和B(-2,5),求直线l的方程解:上述直线方程在x轴,y轴上的截距分别是什么?讨论回答三、提出疑惑疑惑点疑惑内容 课内探究学案一、学习目标(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。学习重点:直线方程两点式。学习难点:两点式推导过程的理解。二、学习过程(自主学习、合作探究、精讲点拨、有效训练)思考2:设直线l经过两点P1(x1,y1),P2(x2,y2),其中x1≠x2,y1≠y2,则直线l斜率是什么?结合点斜式直线l的方程如何?讨论:1、两点式适用范围是什么?答:2、若点中有,或,此时这两点的直线方程是什么? 例1:求过两点的直线的两点式方程,并转化成点斜式.练习:教材P97面1题例2:已知直线与轴的交点为A(a,0),与轴的交点为B(0,b),其中a≠0,b≠0求的方程解析:说明(1)直线与x轴的交点(a,0)的横坐标a叫做直线在x轴的截距,此时直线在y轴的截距是b;解:变式:1.求过点P(2,3),并且在两坐标轴上的截距相等的直线的方程。上题中改为求截距的绝对值相等的直线方程,结果如何?2.求过点P(2,3),并且在x轴上的截距是在y轴上的截距2倍的直线的方程。例3:已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2)求BC所在直线的方程,以及该边上中线所在直线的方程。 反思总结直线的两点式是怎么来的,它的适用范围是什么?经过特殊化后得到截距式,它的几何意义是什么。什么是截距。当堂检测1.2.求经过点P(-5,4),且在两坐标轴上的截距相等的直线方程.3.已知直线l经过点P(1,2),并且点A(2,3)和点B(4,-5)到直线l的距离相等,求直线l的方程.4过(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?课后练习与提高 1、已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。(1)求AB边所在的直线方程;(2)求中线AM的长(3)求AB边的高所在直线方程。 3.2.3直线的一般式方程【教学目标】(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。【教学重难点】重点:直线方程的一般式。难点:对直线方程一般式的理解与应用。【教学过程】(一)情景导入、展示目标。 1.直线方程有几种形式?指明它们的条件及应用范围.点斜式:已知直线上一点P1(x1,y1)的坐标,和直线的斜率k,则直线的方程是斜截式:已知直线的斜率k,和直线在y轴上的截距b则直线方程是两点式:已知直线上两点P1(x1,y1),P2(x2,y2)则直线的方程是:截距式:已知直线在X轴Y轴上的截距为a,b,则直线的方程是2.直线的方程都可以写成关于的二元一次方程吗?反过来,二元一次方程都表示直线?提示:讨论直线的斜率是否存在。直线l经过点P0(x0,y0),斜率为k,则直线的方程为:①当直线l的倾斜角为90°时,直线的方程为x-x0=0 ②(二)预习检查、总结疑惑任意一个二元一次方程:Ax+By+C=0(A,B不同时为0)是否表示一条直线?当B≠0时,上述方程可变形为:它表示过点(0,)斜率为的直线。 当B=0时,是一条平行于y轴的直线。由上述可知,关于x,y的二元一次方程,它表示一条直线。我们把关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)叫做直线的一般式方程,简称一般式(generalform)。(三)合作探究、精讲点拨。探究一:方程Ax+By+C=0中,A,B,C为何值时,方程表示直线:(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;(4)与y轴重合。探究二:直线与二元一次方程具有什么样的关系?答:直线与二元一次方程是一对多的对应,同一条直线对应的多个二元一次方程是同解方程探究三:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与轴垂直的直线。例1.已知直线经过点,斜率为,求直线的点斜式和一般式方程.分析:直接用点斜式写出,然后化简。解:所求的直线方程为:y+4=-(x-6),化为一般式: 4x+3y-12=0。点评:对刚学的知识进行检验。 变式:求经过A(3,-2)B(5,-4)的直线方程,化为一般式。例2、把直线l的一般式方程x-2y+6=0化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形。分析:对式子变形,考察对截距的理解。解:将直线l的一般式方程化成斜截式:y=x+3因此,直线的斜率为k=,它在y轴上的截距为3。在直线方程x-2y+6=0中,令y=0,得 x=-6过两点可以画一条直线,就是直线l的图形。直线与x轴、y轴的交点分别为A(-6,0),B(0,3)直线在x轴上的截距为-6。点评:考察对截距的理解,对式子进行变形,然后描点连续。变式:已知直线经过点(-2,2)且与两坐标轴围成单位面积的三角形,求该直线的方程。 ㈣反馈测试导学案当堂检测㈤总结反思、共同提高【板书设计】一.直线的一般式方程定义形式二.探究问题三、例题例1变式1例2变式爬黑板【作业布置】导学案课后练习与提高 3.2.3直线的一般式方程课前预习学案一、预习目标通过预习同学们知道直线的方程都可以写成关于的二元一次方程吗?反过来,二元一次方程都表示直线?二、预习内容1.直线方程有几种形式?指明它们的条件及应用范围.2.直线的方程都可以写成关于的二元一次方程吗?反过来,二元一次方程都表示直线?提示:讨论直线的斜率是否存在。3.任意一个二元一次方程:Ax+By+C=0(A,B不同时为0)是否表示一条直线? 三、提出疑惑疑惑点疑惑内容课内探究学案一、学习目标:(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。学习重点:直线方程的一般式。学习难点:对直线方程一般式的理解与应用。二、学习过程探究一:方程Ax+By+C=0中,A,B,C为何值时,方程表示直线:(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;(4)与y轴重合。探究二:直线与二元一次方程具有什么样的关系?答:探究三:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?例1.已知直线经过点,斜率为,求直线的点斜式和一般式方程. 分析:直接用点斜式写出,然后化简。解变式:求经过A(3,-2)B(5,-4)的直线方程,化为一般式。例2、把直线l的一般式方程x-2y+6=0化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形。分析:对式子变形,考察对截距的理解。变式:已知直线经过点(-2,2)且与两坐标轴围成单位面积的三角形,求该直线的方程。 反思总结二元一次方程的每一组解都可以看与平面直角坐标系中一个点的坐标,这个方程的全体解组的集合,就是坐标满足二元一次方程的体点的集合,这些点的集合组成了一条直线。平面直角坐标系就是把方程和曲线连起的桥梁。我们已经学习了直线的一般式方程,那么,直线方程之间的区别与联系是什么?关键是理解方程和直线之间的关系。当堂检测1、若直线(2m2-5m-3)x-(m2-9)y+4=0的倾斜角为45度,则m的值是()(A)3(B)2(C)-2(D)2与32、若直线(m+2)x+(2-m)y=2m在x轴上的截距为3,则m的值是________答案B-6课后练习与提高1.若直线通过第二、三、四象限,则系数A、B、C满足条件(A)(A)AB

10000+的老师在这里下载备课资料