2022年人教A版高中数学必修二3.1.2《两条直线平行与垂直的判定》教案
加入VIP免费下载

2022年人教A版高中数学必修二3.1.2《两条直线平行与垂直的判定》教案

ID:1228399

大小:444 KB

页数:11页

时间:2022-08-16

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.1.2 两条直线平行与垂直的判定1.理解两条直线平行或垂直的判断条件.(重点)2.会利用斜率判断两条直线平行或垂直.(难点)3.能利用直线的斜率来判断含字母参数的两直线的平行或垂直.(易错点)[基础·初探]教材整理1 两条直线平行与斜率的关系阅读教材P86“练习”以下至P87“例3”以上部分,完成下列问题.设两条不重合的直线l1,l2,倾斜角分别为α1,α2,斜率存在时斜率分别为k1,k2.则对应关系如下:前提条件α1=α2≠90°α1=α2=90°对应关系l1∥l2⇔k1=k2l1∥l2⇔两直线斜率都不存在图示 判断(正确的打“√”,错误的打“×”)(1)若两条直线斜率相等,则两直线平行.(  )(2)若l1∥l2,则k1=k2.(  ) (3)若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交.(  )(4)若两直线斜率都不存在,则两直线平行.(  )【解析】 (1)、(4)中两直线有可能重合,故(1)(4)错误;(2)可能出现两直线斜率不存在情况,故(2)错误;(3)正确.【答案】 (1)× (2)× (3)√ (4)×教材整理2 两条直线垂直与斜率的关系阅读教材P88“例5”以上部分,完成下列问题.对应关系l1与l2的斜率都存在,分别为k1,k2,则l1⊥l2⇔k1·k2=-1l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是l1⊥l2图示直线l1,l2的斜率是方程x2-3x-1=0的两根,则l1与l2的位置关系是(  )A.平行 B.重合C.相交但不垂直D.垂直【解析】 设两直线的斜率分别为k1,k2,则k1·k2=-1,故l1与l2垂直.【答案】 D[小组合作型]两条直线平行的判定 根据下列给定的条件,判断直线l1与直线l2是否平行.(1)l1经过点A(2,1),B(-3,5),l2经过点C(3,-3),D(8,-7);(2)l1经过点E(0,1),F(-2,-1),l2经过点G(3,4),H(2,3);(3)l1的倾斜角为60°,l2经过点M(1,),N(-2,-2);(4)l1平行于y轴,l2经过点P(0,-2),Q(0,5).【精彩点拨】  先确定各题中直线的斜率是否存在,斜率存在的直线利用斜率公式求出斜率,再利用两条直线平行的条件判断它们是否平行.【自主解答】 (1)由题意知,k1==-,k2==-,所以直线l1与直线l2平行或重合,又kBC==-≠-,故l1∥l2.(2)由题意知,k1==1,k2==1,所以直线l1与直线l2平行或重合,kFG==1,故直线l1与直线l2重合.(3)由题意知,k1=tan60°=,k2==,k1=k2,所以直线l1与直线l2平行或重合.(4)由题意知l1的斜率不存在,且不是y轴,l2的斜率也不存在,恰好是y轴,所以l1∥l2.1.判断两条直线平行,应首先看两条直线的斜率是否存在,即先看两点的横坐标是否相等,对于横坐标相等是特殊情况,应特殊判断.在证明两条直线平行时,要区分平行与重合,必须强调不共线才能确定平行.因为斜率相等也可以推出两条直线重合.2.应用两条直线平行求参数值时,应分斜率存在与不存在两种情况求解.[再练一题]1.已知P(-2,m),Q(m,4),M(m+2,3),N(1,1),若直线PQ∥直线MN,求m的值.【解】 当m=-2时,直线PQ的斜率不存在,而直线MN的斜率存在,MN与PQ不平行,不合题意;当m=-1时,直线MN的斜率不存在,而直线PQ的斜率存在,MN与PQ不平行,不合题意; 当m≠-2且m≠-1时,kPQ==,kMN==.因为直线PQ∥直线MN,所以kPQ=kMN,即=,解得m=0或m=1.当m=0或1时,由图形知,两直线不重合.综上,m的值为0或1.两条直线垂直的判定 (1)l1经过点A(3,2),B(3,-1),l2经过点M(1,1),N(2,1),判断l1与l2是否垂直;(2)已知直线l1经过点A(3,a),B(a-2,3),直线l2经过点C(2,3),D(-1,a-2),若l1⊥l2,求a的值.【精彩点拨】 (1)若斜率存在,求出斜率,利用垂直的条件判断;若一条直线的斜率不存在,再看另一条的斜率是否为0,若为0,则垂直;(2)当两直线的斜率都存在时,由斜率之积等于-1求解;若一条直线的斜率不存在,由另一条直线的斜率为0求解.【自主解答】 (1)直线l1的斜率不存在,直线l2的斜率为0,所以l1⊥l2.(2)由题意,知l2的斜率k2一定存在,l1的斜率可能不存在.当l1的斜率不存在时,3=a-2,即a=5,此时k2=0,则l1⊥l2,满足题意.当l1的斜率k1存在时,a≠5,由斜率公式,得k1==,k2==.由l1⊥l2,知k1k2=-1,即×=-1,解得a=0.综上所述,a的值为0或5. 利用斜率公式来判定两直线垂直的方法1.一看:就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在只需看另一条直线的两点的纵坐标是否相等,若相等,则垂直,若不相等,则进行第二步.2.二代:就是将点的坐标代入斜率公式.3.三求:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.[再练一题]2.(1)l1经过点A(3,4)和B(3,6),l2经过点P(-5,20)和Q(5,20),判断l1与l2是否垂直;(2)直线l1过点(2m,1),(-3,m),直线l2过点(m,m),(1,-2),若l1与l2垂直,求实数m的值.【解】 (1)直线l1的斜率不存在,直线l2的斜率为0,∴l1⊥l2.(2)①当两直线斜率都存在,即m≠-且m≠1时,有k1=,k2=.∵两直线互相垂直,∴×=-1.∴m=-1.②当m=1时,k1=0,k2不存在,此时亦有两直线垂直.当2m=-3,m=-时,k1不存在,k2===-,l1与l2不垂直.综上可知,实数m=±1.[探究共研型]直线平行与垂直的综合应用 探究1 已知△ABC的三个顶点坐标A(5,-1),B(1,1),C(2,3),你能判断△ABC的形状吗?【提示】 如图,AB边所在的直线的斜率kAB=-,BC边所在直线的斜率kBC=2.由kAB·kBC=-1,得AB⊥BC,即∠ABC=90°.∴△ABC是以点B为直角顶点的直角三角形.探究2 已知定点A(-1,3),B(4,2),以A,B为直径作圆,若圆与x轴有交点C.如何确定点C的坐标?【提示】 以线段AB为直径的圆与x轴的交点为C,则AC⊥BC.设C(x,0),则kAC=,kBC=,所以·=-1,得x=1或2,所以C(1,0)或(2,0). 已知四点A(-4,3),B(2,5),C(6,3),D(-3,0),若顺次连接A,B,C,D四点,试判定四边形ABCD的形状.【精彩点拨】 画出图形,由图形判断四边形各边的关系,猜测四边形的形状,再由斜率之间的关系完成证明.【自主解答】 A,B,C,D四点在坐标平面内的位置如图.由斜率公式可得kAB==,kCD==,kAD==-3, kBC==-,kAB=kCD,由图可知AB与CD不重合,∴AB∥CD.由kAD≠kBC,∴AD与BC不平行.又∵kAB·kAD=×(-3)=-1,∴AB⊥AD.故四边形ABCD为直角梯形.1.利用直线的斜率判定平面图形的形状一般要运用数形结合的方法,先由图形作出猜测,然后利用直线的斜率关系进行判定.2.由几何图形的形状求参数(一般是点的坐标)时,要根据图形的特征确定斜率之间的关系,既要考虑斜率是否存在,又要考虑到图形可能出现的各种情形.[再练一题]3.已知A(1,0),B(3,2),C(0,4),点D满足AB⊥CD,且AD∥BC,试求点D的坐标.【解】 设D(x,y),则kAB==1,kBC==-,kCD=,kDA=.因为AB⊥CD,AD∥BC,所以kAB·kCD=-1,kDA=kBC,所以解得即D(10,-6).1.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k等于(  ) A.-3B.3C.-D.【解析】 因为直线l∥AB,所以k=kAB==3.【答案】 B2.过点(,),(0,3)的直线与过点(,),(2,0)的直线的位置关系为(  )A.垂直B.平行C.重合D.以上都不正确【解析】 过点(,),(0,3)的直线的斜率k1==-;过点(,),(2,0)的直线的斜率k2==+.因为k1·k2=-1,所以两条直线垂直.【答案】 A3.已知直线l1的倾斜角为60°,直线l2的斜率k2=m2+-4,若l1∥l2,则m的值为________.【解析】 由题意得m2+-4=tan60°,解得m=±2.【答案】 ±24.直线l1的斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1⊥l2,则x=______,y=________.【解析】 ∵l1⊥l2,且l1的斜率为2,则l2的斜率为-,∴==-,∴x=-1,y=7.【答案】 -1 75.已知四点A(2,2+2),B(-2,2),C(0,2-2),D(4,2),顺次连接这四点,试判断四边形ABCD的形状.(说明理由)【解】 ∵kAB==, kBC==-,kAD==-,kCD==,∴kAB=kCD,kBC=kAD.∴AB∥CD且BC∥AD,∴四边形ABCD是平行四边形,又∵kAB·kBC=-1,∴AB⊥BC,∴四边形ABCD是矩形. 亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧! 德育教育融入小学课堂教学的有效对策随着我国小学德育教育不断提档升级,在小学课堂教学中进行德育渗透,日益成为现代小学品德教育的重要目标与方向。在小学教育阶段,是学生形成自身道德体系的关键时期,利用小学课堂教学开展德育教育,可以实现小学生个人思想品格的形成与塑造。在小学课堂教学体系中,蕴含着大量的德育知识与德育教育资源,如何将德育教育与课堂教学有机融合,是现代德育教学探索的主要方向,同时也是我们日常教学的出发点和着力点。一、营造良好的课堂氛围,充分利用教学资源在小学教育阶段,课堂是培养和激发学生道德意识的重要载体和平台。在道德培养的过程中,最为重要的就是要打造新型民主课堂,让学生在课堂中准确找到自己的位置,明确自身在课堂以及生活中权利义务,强化提升个人道德意识,构建自身的认知体系。在小学教学课堂上,教师要向学生灌输道德意识,在向学生提出要求的过程当中,要构建平等的话语体系,与学生进行平等对话,共同探讨和研究问题,帮助学生在课堂上培养自己的道德思维和道德意识,将自己当成课堂一份子,关注和理解课堂以及生活中出现的道德问题。举例来说,在小学语文六年级上册中,有一篇課文为《文天祥》,在开展讲解过程中,教师可以有效融入爱国主义教育,并引申相关知识,提升学生道德水平,激发学生爱国热情。在语文课堂教学中融入相应的知识,可以减小学生对于单纯宣教的抵触情绪,提高德育教育效果。此外,在小学语文五年级上册中,有课文《我的战友邱少云》,可以利用教学契机,提升学生爱国主义精神。二、打造生活化课堂,引导学生形成道德意识在小学课堂教学当中,要有效培养和提升学生的道德意识,要从打造生活化课堂入手。在传统的小学德育教学过程当中,教学效果不够理想,很多学生对于德育教育都存在一定的抵触情绪,因为小学德育教学内容与现实生活明显存在着脱节的现象,学生对于课堂和教学内容缺乏认同感,无法深刻感知德育课程蕴含的道理与教学内容。对于此,要想利用课堂教学培养学生的道德意识,要从构建生活化课堂入手,让德育课程教学内容与小学生的日常生活紧密相连,提升其认知能力,进而通过理论宣导,引起学生的联想,提高学生的思维能力,培养学生主体思想与德育意识。在教学实践当中,小学教师要充分运用多样化教学素材,内化于心、外化于形,让学生深入课堂体系当中,提升对于课堂教学内容的接受程度,提升道德培养效果。举例来说,在小学语文所学内容当中,很多文章都是开展的德育教育的合适载体,比如说,在小学语文六年级上册中,有一篇名为《将相和》的课文,教师在讲解课文过程当中,不仅仅要讲解历史典故,更要结合现实生活,引导学生学习古人的气度与胸襟,培养自己高尚的人格。因此,在德育教育过程中,教师要将生活习惯与德育教学内容紧密结合起来,创设有效的教学情境,搭建现实生活与道德知识之间的有机桥梁,提升学生的领悟力和自我认知能力,最终构建和培养自身的道德意识,帮助学生早日成为一名思想品德合格的优秀公民。三、强化课堂实践环节,唤醒学生道德意识在传统的小学德育教学当中,存在的一个重要教学问题就是实践环节的缺失,这也是制约学生道德意识培养与提升的一个瓶颈。在开展德育课程教学过程当中,要培养学生的公民意识,要将教学内容有效延伸与拓展,要与日常生活实践相互衔接,开展丰富多样的实践活动,引导学生在实践活动中体验生活,强化自身道德意识,找准自身角色定位,明确自身的权利义务,在不同生活角色中进行转换,提高自身素养,成为一名合格的社会公民。在开展课堂教学过程中,二、能力提升5、12.30万精确到()A.千位11、某学生在进行体检时,量得身高约为1.60米,他在登记时写成1.6米,从近似值的意义上去理解,测量结果与登记数是否一致?为什么?四、中考链接12、(呼和浩特中考题)用四舍五入法,分别按要求对0.05049分别取近似值,其中错误的()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)参考答案夯实基础1、D2、B3、50从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。以前练习写字,大多是在印有田字格或米字格的练习本上进行。教材中田字格或米字格里的范字我都认真仿写,其难度较大。我写起来标准难以掌握,不是靠上了,就是靠下了;不是偏左,就是偏右。后来在老师的指导下,我练习写字时,一开始观察字的笔画偏旁在格子中的位置,做到心中有数,然后才进行仿写,并要求把字尽量写大,要写满格子。这样写的好处有两个:一是培养我读帖习惯,可以从整体布局上纠正我不能把字写在格子正确位置上的毛病;二是促使我习惯写大字,这样指关节、腕关节运动幅度大,能增强手指、手腕的灵活性,有利于他们写字水平的持续提高。这使我意识到,写字必须做到以下几点:一、提高对练字重要性的认识。写字不仅能培养我们认真、细心的良好习惯,勤奋、刻苦的精神,健康、高雅的情趣,还能促进自己的注意力、观察力、意志力、审美力的发展。二、能使我的写字姿势得到训练。握笔姿势和坐姿是否正确,不但会影响字的美观和书写的速度,而且会影响自己的视力和身体的正常发育。写字时随时提醒自己写字时要做到“三个一”(眼离书本一尺远,胸离书桌一拳远,手离笔尖一寸远)。有意识地注意纠正自己的姿势,并持之以恒。逐渐地,这样就能保持正确、良好的写字姿势。三、做好进行自我评价。及时进行自评可以增强自己的兴趣和积极性,找出自己的缺点。在自我评价后,要找爸爸妈妈进行检查和督导,让大人谈谈哪些字写得好,好在哪里;哪些字写得不好,为什么没有写好。和家长共同评价、交流写字积极性会更高。四、在家长的鼓励和表扬下认真练习。练字是需要长时间坚持的,有时会觉得进步很慢,因而想弃练字。这时,我们要知道自己的练习是有成绩的,字是有明显进步的。这样,就会体会到成就感,也就会坚持练下去。在老师的帮助下,自己的努力下我的写字水平也提高了许多。2017年春季学期七年级数学下册5.3平行线的性质同步测试卷解析版一、选择题1.下列命题正确的是()A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等答案:C本题考查了平行线的性质根据平行线的性质依次判断即可。A、缺少两直线平行的前提,故本选项错误;B、缺少两直线平行的前提,故本选项错误;C、两直线平行,内错角相等,正确;D、两直线平行,同旁内角应该互补,故本选项错误;故选C.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是(  )一、填空题。1.在同一平面内,(    )的两条直线叫做平行线;两条直线相交成(   )时,这两条直线互相垂直。2.长方形的对边互相(    ),邻边互相(    )。3.(    )和(    )是特殊的平行四边形。4.下图中有(  )个平行四边形,有(  )个梯形。5.下面的每个图形中各有几组平行的线段。( )组 ( )组 ( )组  ( )组二、判断题。(正确的画“√”,错误的画“✕”)1.梯形只有一条高。(  )2.不相交的两条直线叫做平行线。(  )3.有一组对边平行的四边形叫做梯形。(  )4.如果两条直线都与同一条直线垂直,那么这两条直线互相平行。(  )5.伸缩门利用了平行四边形易变形的特性。(  )6.平行四边形有2种不同的高。(  )三、选择题。(在括号里填上正确答案的序号)1.两条直线相交形成的4个角可能都是(  )。A.锐角B.钝角C.直角D.平角2.平行四边形、梯形的高都是(  )。A.线段B.射线C.直线D.曲线3.有一个角是直角的平行四边形一定是(  )。A.直角梯形B.长方形C.正方形D.等腰梯形4.下图中,AB与CD相交成直角,正确的表述是(  )。A.AB是垂线B.CD是垂线C.AB和CD都是垂线D.CD是AB的垂线5.把一个平行四边形框架拉成一个长方形后,它的周长(  )。A.不变B.变小C.变大D.不能确定6.下面的图形中,两个(  )能拼成一个长方形。 A   B    C    D四、英语字母的笔画中有些是垂直的,有些是平行的。将下面10个字母填入合适的位置。五、画一画。1.过点A画已知直线的垂线。2.画出下面各图形的高。3.下图是一个正方形的两条边,请你把另外两条边画出来。4.请你在下面的梯形中画一条线段,将梯形分成一个平行四边形和一个三角形。你能想到几种方法?说说你的画法。5.李村要修一条小路与公路连接,如何修最短,请你画出来。新课标第一网六、解决问题。1.一个平行四边形的一条边长24厘米,比它的邻边短2厘米,这个平行四边形的周长是多少分米?2.一个等腰梯形的周长是72厘米,腰是15厘米,上底是18厘米。它的下底是多少厘米?3.如下图,一个平行四边形纸板沿高剪开,分成两个梯形,这两个梯形的周长之和比原来平行四边形的周长多多少厘米?4.小刚用4个完全一样的长方形纸片拼成了一个边长是30厘米的正方形(如下图)。中间形成的空白部分也是一个正方形,它的边长是6厘米。(1)你知道小刚用的长方形纸片的周长是多少吗(2)每个长方形的长与宽各是多少厘米第五单元测试卷参考答案一、1.不相交 直角2.平行 垂直3.长方形 正方形4.3 35.2 1 2 3二、1.✕ 2.✕ 3.✕ 4.✕ 5.√ 6.√三、1.C 2.A 3.B 4.D 5.A 6.A四、五、1.略 2.略 3.略4.2种。方法一: 方法二:5.六、1.(24+2+24)×2=100(厘米)100厘米=10分米2.72-15×2-18=24(厘米)3.4×2=8(厘米)4.(1)30×2=60(厘米) 提示:一条长+一条宽=30厘米。(2)长:(30+6)÷2=18(厘米)

10000+的老师在这里下载备课资料