3.2.1直线的点斜式方程
教学目的使学生掌握点斜式方程及其应用,掌握斜截式方程及其应用,知道什么是直线在y轴上的截距。教学重点:点斜式方程、斜截式方程及其应用。教学难点:斜截式方程的几何意义。
复习与引入是不是所有直线都有斜率?怎样求解直线的斜率?1:不是所有直线都有斜率,倾斜角为900的直线没有斜率9002:直线的斜率有两种求解方法:Ⅰ:根据倾斜角来求注:当为钝角时Ⅱ:根据直线上任意两点的坐标来求
两条直线平行有斜率情况无斜率情况a∥b要无都无两条直线垂直有斜率情况无斜率情况a⊥b一个没有,一个为0
如果以一个方程的解为坐标的点都上某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,那么,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.直线方程的概念新课讲授
已知直线l经过已知点P1(x1,y1),并且它的斜率是k,求直线l的方程。lOxy.P1根据经过两点的直线斜率公式,得由直线上一点和直线的斜率确定的直线方程,叫直线的点斜式方程。P.1、直线的点斜式方程:设点P(x,y)是直线l上不同于P1的任意一点。
1、直线的点斜式方程:(1)、当直线l的倾斜角是00时,tan00=0,即k=0,这时直线l与x轴平行或重合l的方程:y-y1=0或y=y1(2)、当直线l的倾斜角是900时,直线l没有斜率,这时直线l与y轴平行或重合l的方程:x-x1=0或x=x1Oxyx1lOxyy1l
点斜式方程的应用:例1:一条直线经过点P1(-2,3),倾斜角α=450,求这条直线的方程,并画出图形。解:这条直线经过点P1(-2,3),斜率是k=tan450=1代入点斜式得y-3=x+2Oxy-55°P1°°
1、写出下列直线的点斜式方程:练习2、说出下列点斜式方程所对应的直线斜率和倾斜角:(1)y-2=x-1
Oxy.(0,b)2、直线的斜截式方程:已知直线l的斜率是k,与y轴的交点是P(0,b),求直线方程。代入点斜式方程,得l的直线方程:y-b=k(x-0)即y=kx+b。(2)直线l与y轴交点(0,b)的纵坐标b叫做直线l在y轴上的截距。方程(2)是由直线的斜率k与它在y轴上的截距b确定,所以方程(2)叫做直线的斜截式方程,简称斜截式。
斜截式方程的应用:例2:斜率是5,在y轴上的截距是4的直线方程。解:由已知得k=5,b=4,代入斜截式方程y=5x+4斜截式方程:y=kx+b几何意义:k是直线的斜率,b是直线在y轴上的截距
练习3、写出下列直线的斜截式方程:
练习4、已知直线l过A(3,-5)和B(-2,5),求直线l的方程解:∵直线l过点A(3,-5)和B(-2,5)将A(3,-5),k=-2代入点斜式,得y-(-5)=-2(x-3)即2x+y-1=0
例题分析:∥∥
练习判断下列各直线是否平行或垂直(1)(2)
①直线的点斜式,斜截式方程在直线斜率存在时才可以应用。②直线方程的最后形式应表示成二元一次方程的一般形式。总结:
练习5、求过点(1,2)且与两坐标轴组成一等腰直角三角形的直线方程。解:∵直线与坐标轴组成一等腰直角三角形∴k=±1直线过点(1,2)代入点斜式方程得y-2=x-1或y-2=-(x-1)即x-y+1=0或x+y-1=0
练习㈢巩固:①经过点(-,2)倾斜角是300的直线的方程是(A)y+=(x-2)(B)y+2=(x-)(C)y-2=(x+)(D)y-2=(x+)②已知直线方程y-3=(x-4),则这条直线经过的已知点,倾斜角分别是(A)(4,3);π/3(B)(-3,-4);π/6(C)(4,3);π/6(D)(-4,-3);π/3③直线方程可表示成点斜式方程的条件是(A)直线的斜率存在(B)直线的斜率不存在(C)直线不过原点(D)不同于上述答案
已知A(0,3),B(-1,0),C(3,0),求D点的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方向排列)。...ACBOxyDD
作业:习题3.2A组1、2题