第周第(课、章、单元)第课时年月日课题直线的点斜式方程课型新授课三维目标:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例;培养学生思维的严谨性和相互合作意识,注意学生语言表述能力的训练.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.培养学生形成严谨的科学态度和求简的数学精神.3.掌握直线方程的点斜式的特征及适用范围,培养和提高学生联系、对应、转化等辩证思维能力.教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.教学方法:分析学生学法:思考,笔记,练习教学过程:提出问题①如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?②已知直线l的斜率k且l经过点P1(x1,y1),如何求直线l的方程?③方程导出的条件是什么?④若直线的斜率k不存在,则直线方程怎样表示?⑤k=与y-y1=k(x-x1)表示同一直线吗?⑥已知直线l的斜率k且l经过点(0,b),如何求直线l的方程?讨论结果:①确定一条直线需要两个条件:a.确定一条直线只需知道k、b即可;b.确定一条直线只需知道直线l上两个不同的已知点.②设P(x,y)为l上任意一点,由经过两点的直线的斜率公式,得k=,化简,得y-y1=k(x-x1).③方程导出的条件是直线l的斜率k存在.④a.x=0;b.x=x1.⑤启发学生回答:方程k=表示的直线l缺少一个点P1(x1,y1),而方程y-y1=k(x-x1)表示的直线l才是整条直线.⑥y=kx+b.应用示例
例1一条直线经过点P1(-2,3),倾斜角α=45°,求这条直线方程,并画出图形.例2如果设两条直线l1和l2的方程分别是l1:y=k1x+b1,l2:y=k2x+b2,试讨论:(1)当l1∥l2时,两条直线在y轴上的截距明显不同,但哪些量是相等的?为什么?(2)l1⊥l2的条件是什么?例3已知直线y=kx+k+2与以A(0,-3)、B(3,0)为端点的线段相交,求实数k的取值范围.例4已知点M(1,0),N(-1,0),点P为直线2x-y-1=0上的动点,则|PM|2+|PN|2的最小值为何?例5如图,要在土地ABCDE上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(精确到1m2)(单位:m).课堂小结通过本节学习,要求大家:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学后记