3.2直线的方程
倾斜角x轴正方向与直线向上方向之间所成的角αxya倾斜角倾斜角的范围:复习回顾
斜率小结1.表示直线倾斜程度的量①倾斜角②斜率2.斜率的计算方法3.斜率和倾斜角的关系复习回顾
复习回顾两条直线平行与垂直的判定平行:对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有l1∥l2k1=k2.垂直:如果两条直线l1、l2都有斜率,且分别为k1、k2,则有l1⊥l2k1k2=-1.条件:不重合、都有斜率条件:都有斜率
§3.2.1直线的点斜式方程
如果以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,那么,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.直线方程的概念新课讲授直线的方程:就是直线上任意一点的坐标x,y所满足的关系表达式。任意一点的坐标关系表达式
点斜式方程xy(1)直线上任意一点的坐标是方程的解(满足方程)lP0(x0,y0)设直线任意一点(P0除外)的坐标为P(x,y)。(2)方程的任意一个解是直线上点的坐标点斜式P(x,y)设直线l过定点P0(x0,y0)且斜率为k,求直线l的方程
点斜式方程xylP0(x0,y0)l与x轴平行或重合倾斜角为0°斜率k=0y0直线上任意点纵坐标都等于y0O
点斜式方程xylP0(x0,y0)l与x轴垂直倾斜角为90°斜率k不存在不能用点斜式求方程x0直线上任意点横坐标都等于x0O
点斜式方程xylxylxylO①倾斜角α≠90°②倾斜角α=0°③倾斜角α=90°y0x0
点斜式方程的应用:例1:一条直线经过点P1(-2,3),倾斜角α=450,求这条直线的方程,并画出图形。解:这条直线经过点P1(-2,3),斜率是k=tan450=1代入点斜式得y-3=x+2Oxy-55°P1°°
斜截式方程xyaP0(0,b)设直线经过点P0(0,b),其斜率为k,求直线方程。斜截式斜率截距当知道斜率和截距时用斜截式
斜截式方程的应用:练习:斜率是5,在y轴上的截距是4的直线方程。解:由已知得k=5,b=4,代入斜截式方程y=5x+4斜截式方程:y=kx+b几何意义:k是直线的斜率,b是直线在y轴上的截距
例题分析:∥∥
练习1、已知直线l过A(3,-5)和B(-2,5),求直线l的方程解:∵直线l过点A(3,-5)和B(-2,5)将A(3,-5),k=-2代入点斜式,得y-(-5)=-2(x-3)即2x+y-1=0
练习2、求过点(1,2)且与两坐标轴组成一等腰直角三角形的直线方程。解:∵直线与坐标轴组成一等腰直角三角形∴k=±1直线过点(1,2)代入点斜式方程得y-2=x-1或y-2=-(x-1)即x-y+1=0或x+y-1=0
思考:
小结1.点斜式方程当知道斜率和一点坐标时用点斜式2.斜截式方程当知道斜率k和截距b时用斜截式3.特殊情况①直线和x轴平行时,倾斜角α=0°②直线与x轴垂直时,倾斜角α=90°
注意:直线上任意一点P与这条直线上一个定点P1所确定的斜率都相等。⑵当P点与P1重合时,有x=x1,y=y1,此时满足y-y1=k(x-x1),所以直线l上所有点的坐标都满足y-y1=k(x-x1),而不在直线l上的点,显然不满足(y-y1)/(x-x1)=k即不满足y-y1=k(x-x1),因此y-y1=k(x-x1)是直线l的方程。如果直线l过P1且平行于Y轴,此时它的倾斜角是900,而它的斜率不存在,它的方程不能用点斜式表示,但这时直线上任一点的横坐标x都等于P1的横坐标所以方程为x=x1⑶如直线l过P1且平行于x轴,则它的斜率k=0,由点斜式知方程为y=y0;⑴P为直线上的任意一点,它的位置与方程无关Oxy°P1°°°°°°°P°°°°°°
再见