直线方程--点斜式教学目标:1.使学生掌握点斜式和斜截式的推导过程,并能根据条件,熟练求出直线的点斜式方程和斜截式方程。2.会用直线的方程求出斜率、倾斜角、截距等问题,并能根据方程画出方程所表示的直线。3.培养学生化归数学问题的能力及利用知识解决问题的能力。4.理解直线方程点斜式和斜截式的形式特点和适用范围。教学重点与难点:重点:直线方程的点斜式的公式推导以及有已知条件求直线的方程。难点:直线方程点斜式推导过程的理解。教学方法 :启发引导式发现探究式教学用具:计算机实物投影仪教学过程设计:【创设情景】师:上一节我们分析了在直角坐标系内确定一条直线的几何要素。那么,我们能否用给定的条件(点P0的坐标和斜率,或P1,P2的坐标),将直线上的所有点的坐标()满足的关系表示出来呢?这节课,我们一起学习直线的点斜式方程。【探求新知】师:若直线经过点,且斜率为,求直线的方程。生:(给学生以适当的引导)设点P()是直线上不同于点的任意一点,因为直线的斜率为,由斜率公式得:,可化为:………………①〖探究〗:思考下面的问题:(不必严格地证明,只要求验证)(1)、过点,斜率为的直线上的点,其坐标都满足方程①吗?(2)、坐标满足方程①的点都在过点,斜率为的直线上吗?生:经过探究和验证,上述的两条都成立。所以方程①就是过点,斜率为的直线的方程。因此得到:(一)、直线的点斜式方程:
其中()为直线上一点坐标,为直线的斜率。方程①是由直线上一定点及其斜率确定,叫做直线的点斜式方程,简称点斜式。师:直线的点斜式方程能否表示坐标平面上的所有直线呢?(让学生思考,互相讨论)生1:不能,因为不是所有的直线都有斜率。生2:对,因为直线的点斜式方程要用到直线的斜率,有斜率的直线才能写成点斜式方程,如果直线没有斜率,其方程就不能用点斜式表示。师:verygood!那么,轴所在直线的方程是什么?轴所在直线的方程又是什么?生:因为轴所在直线的斜率为=0,且过点(0,0),所以轴所在直线的方程是=0。(即:轴所在直线上的每一点的纵坐标都等于0。)而轴所在直线的斜率不存在,它的方程不能用点斜式表示。但轴所在直线上的每一点的横坐标都等于0。所以轴所在直线的方程为:=0。师:那些与轴或轴平行的直线方程又如何表示呢?生:(猜想)与轴平行的直线的方程为:;与轴平行的直线的方程为:。师:当直线的倾斜角为0°时,,即=0,直线与轴平行或重合,直线方程为:,或。当直线倾斜角为90°时,直线没有斜率,直线与轴平行或重合,它的方程不能用点斜式表示。这时直线方程为:,或。经过分析,同学们的猜想是正确的。师:已知直线的斜率为k,与y轴的交点是P(0,b),求直线的方程。生:因为直线的斜率为,与y轴的交点是P(0,b),代入直线方程的点斜式,xyob得直线的方程为:即:(二)、直线斜截式方程:…………②
我们把直线与轴交点(0,)的纵坐标叫做直线在轴上的截距(即纵截距)。方程②是由直线的斜率和它在轴上的截距确定的,所以叫做直线斜截式方程,简称为斜截式。师:截距是距离吗?生:不是,b为直线l在y轴上截距,截距不是距离,截距是直线与坐标轴交点的相应坐标,是一个实数,可正可负可为零;距离是线段的长度,是非负实数。师:观察方程,它的形式具有什么特点?生:左端的系数恒为1,右端的系数和常数均有几何意义:是直线的斜率,是直线在轴上的截距。师:当直线倾斜角为90°时,它的方程能不能用斜截式来表示?生:不能,因为直线没有斜率。师:方程与我们学过的一次函数的表达式之间有什么关系呢?生:当时,直线斜截式方程就是一次函数的表示形式。【例题分析】〖例1〗直线经过点P0(-2,3),且倾斜角α=45°,求直线的点斜式方程,并画出直线。师:分析并根据已知条件,先求得直线方程的斜率。代入直线的点斜式方程即可求得。生:(思考后自主完成解题过程)yxoα•解:直线经过点P0(-2,3),斜率是:。代入点斜式方程得。这就是所求的直线方程,如右图中所示。(画图时,只需要再找到满足方程的另一个点即可。)〖例2〗已知直线试讨论:(1)的条件是什么?(2)的条件是什么?师:让学生回忆前面用斜率判断两条直线平行、垂直的结论。生:(思考后互相交流意见、想法。)总结得到:对于直线 【课堂精练】
课本P100练习1,2,3,4。说明:通过加强练习来熟悉直线方程的点斜式与斜截式。【课堂小结】师生:通过本节内容的学习,要求大家掌握直线方程的点斜式,了解直线方程的斜截式,并了解求解直线方程的一般思路。求直线方程需要两个独立的条件(斜率及一点),根据不同的几何条件选用不同形式的方程。【课后作业】P106习题3.21.(1)、(2)、(3)、(5)、(6)