复习直线方程名称已知条件直线方程使用范围点斜式斜截式斜率k和直线在y轴上的截距点和斜率k斜率必须存在斜率不存在时,
解:设直线方程为:y=kx+b.由已知得:得:所以,直线方程为:y=x+2有其他做法吗?介绍新的知识与方法所以,直线方程为:y=x+2将A(1,3),k=1代入点斜式,得:y-3=x-1
3.2.2直线的两点式方程
xylP2(x2,y2)P1(x1,y1)探究:已知直线上两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),如何求出通过这两点的直线方程呢?记忆特点:
记忆特点:左边全为y,右边全为x两边的分母全为常数分子,分母中的减数相同说明:(1)这个方程是由直线上两点确定;叫两点式.(2)当直线没斜率或斜率为0时,不能用两点式来表示;
1.求经过下列两点的直线的两点式方程,再化斜截式方程.(1)P(2,1),Q(0,-3)(2)A(0,5),B(5,0)(3)C(-4,-5),D(0,0)课堂练习:方法小结已知两点坐标,求直线方程的方法:①用两点式②先求出斜率k,再用点斜式。
截距式方程xylA(a,0)截距式方程B(0,b)代入两点式方程得化简得横截距纵截距截距式适用于横、纵截距都存在且都不为0的直线.
2.根据下列条件求直线方程(1)在x轴上的截距为2,在y轴上的截距是3;(2)在x轴上的截距为-5,在y轴上的截距是6;由截距式得:整理得:由截距式得:整理得:
练习
中点坐标公式xyA(x1,y1)B(x2,y2)中点
例2、三角形的顶点是A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程.xyOCBA....M变式1:BC边上垂直平分线所在直线的方程?变式2:BC边上高所在直线的方程?3x-5y+15=03x-5y-7=0
小结点斜式斜率和一点坐标斜截式斜率k和截距b两点坐标两点式点斜式两个截距截距式
求过(1,2)并且在两个坐标轴上的截距相等的直线?解:那还有一条呢?y=2x(与x轴和y轴的截距都为0)所以直线方程为:x+y-3=0即:a=3把(1,2)代入得:设直线的方程为:对截距概念的深刻理解当两截距都等于0时当两截距都不为0时法二:用点斜式求解
解:三条变:过(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?解得:a=b=3或a=-b=-1直线方程为:y+x-3=0、y-x-1=0或y=2x设对截距概念的深刻理解变:过(1,2)并且在y轴上的截距是x轴上的截距的2倍的直线是()A、x+y-3=0B、x+y-3=0或y=2xC、2x+y-4=0D、2x+y-4=0或y=2x
对截距概念的深刻理解已知直线l过定点P(3,2)且与x轴、y轴的正半轴分别交于A、B两点。求△AOB面积的最小值及此时l的方程
练习:
数形结合与对称的灵活应用已知一条光线从点A(2,-1)发出、经x轴反射后,通过点B(-2,-4),试求点P坐标A(2,-1)(x,0)B(-2,-4)P变:已知两点A(2,-1)、B(-2,-4)试在x轴上求一点P,使|PA|+|PB|最小变:试在x轴上求一点P,使|PB|-|PA|最大
数形结合与对称的灵活应用已知直线l:x-2y+8=0和两点A(2,0)、B(-2,-4)(1)求点A关于直线l的对称点(2)在直线l是求一点P,使|PA|+|PB|最小(3)在直线l是求一点Q,使|PA|-|PB|最大A(2,0)A1(x,y)GB(-2,-4)PA(2,0)GB(-2,-4)(-2,8)(-2,3)(12,10)
小结点斜式斜率和一点坐标斜截式斜率k和截距b两点坐标两点式点斜式两个截距截距式
P100习题3.2A组:3、9课外作业:1.阅读教材P.92到P.94;2.预习书P973.2.3,并做《三维设计》52—53页
y-y1=k(x-x1)(1)这个方程是由直线上一点和斜率确定的(2)当直线l的倾斜角为0°时,直线方程为y=y1(3)当直线倾斜角90°时,直线没有斜率,方程式不能用点斜式表示,直线方程为x=x1▲▲▲▲1.点斜式:
y=kx+b说明:(1)上述方程是由直线l的斜率和它的纵截距确定的,叫做直线的方程的斜截式。(2)纵截距可以大于0,也可以等于0或小于0。2.斜截式:
说明:(1)这个方程是由直线上两点确定;(2)当直线没斜率或斜率为0时,不能用两点式来表示;3.两点式:
说明:(1)这一直线方程是由直线的纵截距和横截距所确定;(2)截距式适用于纵,横截距都存在且都不为0的直线;4.截距式:
对截距概念的深刻理解求过定点P(1,2)且横截距比纵截距大1的直线方程
小魔方站作品盗版必究语文
更多精彩内容,微信扫描二维码获取扫描二维码获取更多资源谢谢您下载使用!
附赠中高考状元学习方法
群星璀璨---近几年全国高考状元荟萃
前言高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同学尤其是将参加高考的同学都有一定的借鉴意义。
青春风采
青春风采
北京市文科状元阳光女孩--何旋高考总分:692分(含20分加分)语文131分数学145分英语141分文综255分毕业学校:报考高校:北京大学光华管理学院
来自,高考成绩672分,还有20分加分。“何旋给人最深的印象就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。
班主任:我觉得何旋今天取得这样的成绩,我觉得,很重要的是,何旋是土生土长的的学生,二中的教育理念是综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。
高考总分:711分毕业学校:语文139分数学140分英语141分理综291分报考高校:北京大学光华管理学院北京市理科状元杨蕙心
班主任孙烨:杨蕙心是一个目标高远的学生,而且具有很好的学习品质。学习效率高是杨蕙心的一大特点,一般同学两三个小时才能完成的作业,她一个小时就能完成。杨蕙心分析问题的能力很强,这一点在平常的考试中可以体现。每当杨蕙心在某科考试中出现了问题,她能很快找到问题的原因,并马上拿出解决办法。
孙老师说,杨蕙心学习效率很高,认真执行老师的复习要求,往往一个小时能完成别人两三个小时的作业量,而且计划性强,善于自我调节。此外,学校还有一群与她实力相当的同学,他们经常在一起切磋、交流,形成一种良性的竞争氛围。谈起自己的高考心得,杨蕙心说出了“听话”两个字。她认为在高三冲刺阶段一定要跟随老师的脚步。“老师介绍的都是多年积累的学习方法,肯定是最有益的。”高三紧张的学习中,她常做的事情就是告诫自己要坚持,不能因为一次考试成绩就否定自己。高三的几次模拟考试中,她的成绩一直稳定在年级前5名左右。
上海2006高考理科状元--武亦文武亦文格致中学理科班学生班级职务:学习委员高考志愿:复旦经济高考成绩:语文127分数学142分英语144分物理145分综合27分总分585分
“一分也不能少”“我坚持做好每天的预习、复习,每天放学回家看半小时报纸,晚上10:30休息,感觉很轻松地度过了三年高中学习。”当得知自己的高考成绩后,格致中学的武亦文遗憾地说道,“平时模拟考试时,自己总有一门满分,这次高考却没有出现,有些遗憾。”
坚持做好每个学习步骤武亦文的高考高分来自于她日常严谨的学习态度,坚持认真做好每天的预习、复习。“高中三年,从来没有熬夜,上课跟着老师走,保证课堂效率。”武亦文介绍,“班主任王老师对我的成长起了很大引导作用,王老师办事很认真,凡事都会投入自己所有精力,看重做事的过程而不重结果。每当学生没有取得好结果,王老师也会淡然一笑,鼓励学生注重学习的过程。”
上海高考文科状元---常方舟曹杨二中高三(14)班学生班级职务:学习委员高考志愿:北京大学中文系高考成绩:语文121分数学146分英语146分历史134分综合28分总分575分(另有附加分10分)
“我对竞赛题一样发怵”总结自己的成功经验,常方舟认为学习的高效率是最重要因素,“高中三年,我每天晚上都是10:30休息,这个生活习惯雷打不动。早晨总是6:15起床,以保证八小时左右的睡眠。平时功课再多再忙,我也不会‘开夜车’。身体健康,体力充沛才能保证有效学习。”高三阶段,有的同学每天学习到凌晨两三点,这种习惯在常方舟看来反而会影响次日的学习状态。每天课后,常方舟也不会花太多时间做功课,常常是做完老师布置的作业就算完。
“用好课堂40分钟最重要。我的经验是,哪怕是再简单的内容,仔细听和不上心,效果肯定是不一样的。对于课堂上老师讲解的内容,有的同学觉得很简单,听讲就不会很认真,但老师讲解往往是由浅入深的,开始不认真,后来就很难听懂了;即使能听懂,中间也可能出现一些知识盲区。高考试题考的大多是基础知识,正就是很多同学眼里很简单的内容。”常方舟告诉记者,其实自己对竞赛试题类偏难的题目并不擅长,高考出色的原因正在于试题多为基础题,对上了自己的“口味”。