高中数学(3.2.2直线的点式方程)示范教案新人教a版必修2
加入VIP免费下载

高中数学(3.2.2直线的点式方程)示范教案新人教a版必修2

ID:1229471

大小:154.5 KB

页数:10页

时间:2022-08-17

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.2.2直线的两点式方程整体设计教学分析本节课的关键是关于两点式的推导以及斜率k不存在或斜率k=0时对两点式的讨论及变形.直线方程的两点式可由点斜式导出.若已知两点恰好在坐标轴上(非原点),则可用两点式的特例截距式写出直线的方程.由于由截距式方程可直接确定直线与x轴和y轴的交点的坐标,因此用截距式画直线比较方便.在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式.三维目标1.让学生掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程.培养学生数形结合的数学思想,为今后的学习打下良好的基础.2.了解直线方程截距式的形式特点及适用范围,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.重点难点教学重点:直线方程两点式和截距式.教学难点:关于两点式的推导以及斜率k不存在或斜率k=0时对两点式方程的讨论及变形.课时安排1课时教学过程导入新课思路1.上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的?利用点斜式解答如下问题:(1)已知直线l经过两点P1(1,2),P2(3,5),求直线l的方程.(2)已知两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),求通过这两点的直线方程.思路2.要学生求直线的方程,题目如下:①A(8,-1),B(-2,4);②A(6,-4),B(-1,2);③A(x1,y1),B(x2,y2)(x1≠x2).(分别找3个同学说上述题的求解过程和答案,并着重要求说求k及求解过程)这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢?推进新课新知探究提出问题①已知两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),求通过这两点的直线方程.②若点P1(x1,y1),P2(x2,y2)中有x1=x2或y1=y2,此时这两点的直线方程是什么?③两点式公式运用时应注意什么?④已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a≠0,b≠0,求直线l的方程.⑤a、b表示截距是不是直线与坐标轴的两个交点到原点的距离?⑥截距式不能表示平面坐标系下哪些直线?活动:①教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程.师生共同归纳:已知直线上两个不同点,求直线的方程步骤:a.利用直线的斜率公式求出斜率k; b.利用点斜式写出直线的方程.∵x1≠x2,k=,∴直线的方程为y-y1=(x-x1).∴l的方程为y-y1=(x-x1).①当y1≠y2时,方程①可以写成.②由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式.注意:②式是由①式导出的,它们表示的直线范围不同.①式中只需x1≠x2,它不能表示倾斜角为90°的直线的方程;②式中x1≠x2且y1≠y2,它不能表示倾斜角为0°或90°的直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆.如果把两点式变成(y-y1)(x2-x1)=(x-x1)(y2-y1),那么就可以用它来求过平面上任意两已知点的直线方程.②使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.教师引导学生通过画图、观察和分析,发现当x1=x2时,直线与x轴垂直,所以直线方程为x=x1;当y1=y2时,直线与y轴垂直,直线方程为y=y1.③引导学生注意分式的分母需满足的条件.④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l的方程?哪种方法更为简捷?然后求出直线方程.因为直线l经过(a,0)和(0,b)两点,将这两点的坐标代入两点式,得.①就是=1.②注意:②这个方程形式对称、美观,其中a是直线与x轴交点的横坐标,称a为直线在x轴上的截距,简称横截距;b是直线与y轴交点的纵坐标,称b为直线在y轴上的截距,简称纵截距.因为方程②是由直线在x轴和y轴上的截距确定的,所以方程②式叫做直线方程的截距式.⑤注意到截距的定义,易知a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.⑥考虑到分母的原因,截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.讨论结果:①若x1≠x2且y1≠y2,则直线l方程为.②当x1=x2时,直线与x轴垂直,直线方程为x=x1;当y1=y2时,直线与y轴垂直,直线方程为y=y1.③倾斜角是0°或90°的直线不能用两点式公式表示(因为x1≠x2,y1≠y2).④=1.⑤a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.⑥截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.应用示例思路1例1求出下列直线的截距式方程: (1)横截距是3,纵截距是5;(2)横截距是10,纵截距是-7;(3)横截距是-4,纵截距是-8.答案:(1)5x+3y-15=0;(2)7x-10y-70=0;(3)3x+4y+12=0.变式训练已知Rt△ABC的两直角边AC=3,BC=4,直角顶点C在原点,直角边AC在x轴负方向上,BC在y轴正方向上,求斜边AB所在的直线方程.答案:4x-3y+12=0.例2如图1,已知三角形的顶点是A(-5,0)、B(3,-3)、C(0,2),求这个三角形三边所在直线的方程.图1活动:根据A、B、C三点坐标的特征,求AB所在的直线的方程应选用两点式;求BC所在的直线的方程应选用斜截式;求AC所在的直线的方程应选用截距式.解:AB所在直线的方程,由两点式,得,即3x+8y+15=0.BC所在直线的方程,由斜截式,得y=-x+2,即5x+3y-6=0.AC所在直线的方程,由截距式,得=1,即2x-5y+10=0.变式训练如图2,已知正方形的边长是4,它的中心在原点,对角线在坐标轴上,求正方形各边及对称轴所在直线的方程.图2活动:由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程.而正方形的对称轴PQ,MN,x轴,y轴则不能用截距式,其中PQ,MN应选用斜截式;x轴,y轴的方程可以直接写出.解:因为|AB|=4,所以|OA|=|OB|=.因此A、B、C、D的坐标分别为(2,0)、(0,2)、(-2,0)、(0,-2). 所以AB所在直线的方程是=1,即x+y-2=0.BC所在直线的方程是=1,即x-y+2=0.CD所在直线的方程是=1,即x+y+2=0.DA所在直线的方程是=1,即x-y-2=0.对称轴方程分别为x±y=0,x=0,y=0.思路2例1已知△ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.(1)求AB边所在的直线方程;(2)求中线AM的长;(3)求AB边的高所在直线方程.解:(1)由两点式写方程,得,即6x-y+11=0.(2)设M的坐标为(x0,y0),则由中点坐标公式,得x0==1,y0==1,故M(1,1),AM==2.(3)因为直线AB的斜率为kAB==-6,设AB边上的高所在直线的斜率为k,则有k×kAB=k×(-6)=-1,∴k=.所以AB边高所在直线方程为y-3=(x-4),即x-6y+14=0.变式训练求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程.解:设直线方程为=1,则由题意知,有ab=3,∴ab=4.解得a=4,b=1或a=1,b=4.则直线方程是=1或=1,即x+4y-4=0或4x+y-4=0.例2经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程.解:当截距为0时,设y=kx,又过点A(1,2),则得k=2,即y=2x.当截距不为0时,设=1或=1,过点A(1,2),则得a=3,或a=-1,即x+y-3=0或x-y+1=0.这样的直线有3条:2x-y=0,x+y-3=0或x-y+1=0.变式训练过点A(-5,-4)作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5.答案:2x-5y-10=0,8x-5y+20=0.知能训练课本本节练习1、2、3. 拓展提升问题:把函数y=f(x)在x=a及x=b之间的一段图象近似地看作直线,设a≤c≤b,证明f(c)的近似值是f(a)+[f(b)-f(a)].证明:∵A、B、C三点共线,∴kAC=kAB,即.∴f(c)-f(a)=[f(b)-f(a)],即f(c)=f(a)+[f(b)-f(a)].∴f(c)的近似值是f(a)+[f(b)-f(a)].课堂小结通过本节学习,要求大家:掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程.理解数形结合的数学思想,为今后的学习打下良好的基础.了解直线方程截距式的形式特点及适用范围,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神.作业课本习题3.2A组9、10.设计感想计算机技术的发展日新月异,将计算机引进课堂是大势所趋,有条件的学校或教师可以引进或自己制作多媒体课件来辅助教学,以提高教学效果,激发学生兴趣,达到事半功倍的效果.介绍如下:在直角坐标系中,给出两个已知点A(x1,y1),B(x2,y2),但A点B点的坐标受变量控制,即是可变的,坐标系中显示A、B两点决定的直线,且显示相对应的两点式表示的直线方程,当A、B两点不断任意变化时,直线和直线方程也随之不断变化(通过动感引发学生的兴趣),并伴随悦耳的音乐声,只有当x1=x2或y1=y2时,直线依然存在,而直线方程显示“不存在”(并不断闪烁),伴以悦耳的提示音,且变幻的画面,需用鼠标点击才能继续运转.对于两点式的其他变式也可以同样如法炮制.通过这些形象、生动的画面和声音能极大引发学生学习的兴趣,达到意想不到的效果. XX中心小学每周例会教师谈课改体会(2017—2018学年第二学期)主题:《德育教育融入小学课堂教学的有效对策》主讲人:2018年3月23日(第3周)内容随着我国小学德育教育不断提档升级,在小学课堂教学中进行德育渗透,日益成为现代小学品德教育的重要目标与方向。在小学教育阶段,是学生形成自身道德体系的关键时期,利用小学课堂教学开展德育教育,可以实现小学生个人思想品格的形成与塑造。在小学课堂教学体系中,蕴含着大量的德育知识与德育教育资源,如何将德育教育与课堂教学有机融合,是现代德育教学探索的主要方向,同时也是我们日常教学的出发点和着力点。一、营造良好的课堂氛围,充分利用教学资源10 在小学教育阶段,课堂是培养和激发学生道德意识的重要载体和平台。在道德培养的过程中,最为重要的就是要打造新型民主课堂,让学生在课堂中准确找到自己的位置,明确自身在课堂以及生活中权利义务,强化提升个人道德意识,构建自身的认知体系。在小学教学课堂上,教师要向学生灌输道德意识,在向学生提出要求的过程当中,要构建平等的话语体系,与学生进行平等对话,共同探讨和研究问题,帮助学生在课堂上培养自己的道德思维和道德意识,将自己当成课堂一份子,关注和理解课堂以及生活中出现的道德问题。举例来说,在小学语文六年级上册中,有一篇課文为《文天祥》,在开展讲解过程中,教师可以有效融入爱国主义教育,并引申相关知识,提升学生道德水平,激发学生爱国热情。在语文课堂教学中融入相应的知识,可以减小学生对于单纯宣教的抵触情绪,提高德育教育效果。此外,在小学语文五年级上册中,有课文《我的战友邱少云》,可以利用教学契机,提升学生爱国主义精神。二、打造生活化课堂,引导学生形成道德意识在小学课堂教学当中,要有效培养和提升学生的道德意识,要从打造生活化课堂入手。在传统的小学德育教学过程当中,教学效果不够理想,很多学生对于德育教育都存在一定的抵触情绪,因为小学德育教学内容与现实生活明显存在着脱节的现象,学生对于课堂和教学内容缺乏认同感,无法深刻感知德育课程蕴含的道理与教学内容。对于此,要想利用课堂教学培养学生的道德意识,要从构建生活化课堂入手,让德育课程教学内容与小学生的日常生活紧密相连,提升其认知能力,进而通过理论宣导,引起学生的联想,提高学生的思维能力,培养学生主体思想与德育意识。10 在教学实践当中,小学教师要充分运用多样化教学素材,内化于心、外化于形,让学生深入课堂体系当中,提升对于课堂教学内容的接受程度,提升道德培养效果。举例来说,在小学语文所学内容当中,很多文章都是开展的德育教育的合适载体,比如说,在小学语文六年级上册中,有一篇名为《将相和》的课文,教师在讲解课文过程当中,不仅仅要讲解历史典故,更要结合现实生活,引导学生学习古人的气度与胸襟,培养自己高尚的人格。因此,在德育教育过程中,教师要将生活习惯与德育教学内容紧密结合起来,创设有效的教学情境,搭建现实生活与道德知识之间的有机桥梁,提升学生的领悟力和自我认知能力,最终构建和培养自身的道德意识,帮助学生早日成为一名思想品德合格的优秀公民。三、强化课堂实践环节,唤醒学生道德意识在传统的小学德育教学当中,存在的一个重要教学问题就是实践环节的缺失,这也是制约学生道德意识培养与提升的一个瓶颈。在开展德育课程教学过程当中,要培养学生的公民意识,要将教学内容有效延伸与拓展,要与日常生活实践相互衔接,开展丰富多样的实践活动,引导学生在实践活动中体验生活,强化自身道德意识,找准自身角色定位,明确自身的权利义务,在不同生活角色中进行转换,提高自身素养,成为一名合格的社会公民。10 在开展课堂教学过程中,教师要充分发挥引导作用,唤醒学生的道德意识,提升道德水平。举例来说,具有高道德水平的人,一定是一个遵守社会规矩的人,在开展社会规则教学当中,就可以采取实践教学的方式,让学生自主思索,在不同社会关系中,如何成为一名受欢迎的人,并且去亲身实践,正确获得他人的积极评价,并最终把这些正面评价反馈到课堂中,强化课堂教学效果,提升学生道德水平。比如说,在组织学生外出踏青的时候,可以联系教学内容,让学生感知大自然美丽的同时,还要为保护环境贡献一份利郎,努力做一名文明游客。在乘坐公交车的时候,要为老人和孕妇让座,做一名好少年,在公共场所,要做一名文明公民,不吵闹和大声喧哗,遵守公共场所秩序。在家庭生活中,要尊重父母,做一个让父母放心的好孩子。在校园生活中,要做一名讲文明、懂礼貌的好学生,尊敬师长,友爱同学。四、结语综上所述,小学教育阶段是塑造学生个人品格的关键时期,在小学德育教学体系中,一个重要的任务和目标就是培养学生的道德意识,帮助学生提高自我认知能力,树立正确的世界观、人生观、价值观,形成正确的价值系统和价值理念,进一步深入体察社会、融入社会。在小学德育教育过程中,要将德育知识与小学课堂教学有机融合,切实提升学生道德水平。春节活动策划酒店春节期间员工关怀活动安排一、迎新年拔河比赛点:*******厅时间:19:30——0:30)10 10

10000+的老师在这里下载备课资料