高中数学人教A版必修2 第三章 直线与方程 3.2.3 直线的一般式方程 讲义(含解析)
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.2.3 直线的一般式方程 讲义(含解析)

ID:1229915

大小:1.79 MB

页数:12页

时间:2022-08-17

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第3课时 直线的一般式方程[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P97~P99,回答下列问题:(1)平面直角坐标系中的每一条直线都可以用一个关于x,y的二元一次方程表示吗?为什么?提示:都可以,原因如下:(1)直线和y轴相交于点(0,b)时:此时倾斜角α≠,直线的斜率k存在.直线可表示成y=kx+b,可转化为kx+(-1)y+b=0,这是关于x,y的二元一次方程.(2)直线和y轴平行(包含重合)时:此时倾斜角α=,直线的斜率k不存在,不能用y=kx+b表示,而只能表示成x-a=0,它可以认为是关于x,y的二元一次方程,此时方程中y的系数为0.(2)每一个关于x,y的二元一次方程Ax+By+C=0(A,B不同时为零)都能表示一条直线吗?为什么?提示:能表示一条直线,原因如下:当B≠0时,方程Ax+By+C=0可变形为y=-x-,它表示过点,斜率为-的直线.当B=0时,方程Ax+By+C=0变成Ax+C=0.即x=-,它表示与y轴平行或重合的一条直线.(3)在方程Ax+By+C=0(A,B不同时为零)中,A,B,C为何值时,方程表示的直线①平行于x轴;②平行于y轴;③与x轴重合;④与y轴重合.提示:当A=0,B≠0时,方程变为y=-,当C≠0时表示的直线平行于x轴,当C=0时与x轴重合;当A≠0,B=0时,方程变为x=-,当C≠0时表示的直线平行于y轴,当C=0时与y轴重合.2.归纳总结,核心必记 直线的一般式方程(1)定义:关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫做直线的一般式方程,简称一般式.(2)适用范围:平面直角坐标系中,任何一条直线都可用一般式表示.(3)系数的几何意义:当B≠0时,则-=k(斜率),-=b(y轴上的截距);当B=0,A≠0时,则-=a(x轴上的截距),此时不存在斜率.[问题思考] 当A=0,或B=0,或C=0时,方程Ax+By+C=0分别表示什么样的直线?提示:(1)若A=0,则y=-,表示与y轴垂直的一条直线.(2)若B=0,则x=-,表示与x轴垂直的一条直线.(3)若C=0,则Ax+By=0,表示过原点的一条直线.[课前反思]通过以上预习,必须掌握的几个知识点.(1)直线方程的一般式的形式是什么? ;(2)直线方程的一般式的适用范围是什么? ;(3)直线方程的一般式中各系数的几何意义是什么? . 观察下列直线方程直线l1:y-2=3(x-1);直线l2:y=3x+2;直线l3:=;直线l4:+=1. [思考1] 上述形式的直线方程能化成二元一次方程Ax+By+C=0的形式吗?提示:能.[思考2] 二元一次方程Ax+By+C=0都能表示直线吗?提示:能.[思考3] 怎样认识直线方程的一般式?名师指津:解读直线方程的一般式:(1)方程是关于x,y的二元一次方程.(2)方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列.(3)x的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程.[思考4] 二元一次方程与直线的关系是什么?名师指津:二元一次方程与直线的关系:(1)二元一次方程的每一组解都可以看成平面直角坐标系中一个点的坐标,这个方程的全体解组成的集合,就是坐标满足二元一次方程的全体点的集合,这些点的集合就组成了一条直线.(2)二元一次方程与平面直角坐标系中的直线是一一对应的,因此直线的一般式方程可以表示坐标平面内的任意一条直线.讲一讲1.根据下列各条件写出直线的方程,并且化成一般式.(链接教材P98-例5)(1)斜率是-,经过点A(8,-2);(2)经过点B(4,2),平行于x轴;(3)在x轴和y轴上的截距分别是、-3;(4)经过两点P1(3,-2),P2(5,-4).[尝试解答] 选择合适的直线方程形式.(1)由点斜式得y-(-2)=-(x-8),即x+2y-4=0.(2)由斜截式得y=2,即y-2=0.(3)由截距式得+=1,即2x-y-3=0.(4)由两点式得=,即x+y-1=0. 求直线一般式方程的策略(1)当A≠0时,方程可化为x+y+=0,只需求,的值;若B≠0,则方程化为x+y+=0,只需确定,的值.因此,只要给出两个条件,就可以求出直线方程.(2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.练一练1.根据下列条件分别写出直线的方程,并化为一般式方程.(1)斜率是且经过点A(5,3);(2)经过A(-1,5),B(2,-1)两点;(3)在x,y轴上的截距分别是-3,-1.解:(1)由点斜式方程得y-3=(x-5),整理得x-y+3-5=0.(2)由两点式方程得=,整理得2x+y-3=0.(3)由截距式方程得+=1,整理得x+3y+3=0. 讲一讲2.已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.[思路点拨] (1)当直线恒过第一象限内的一定点时,必然可得该直线总经过第一象限;(2)直线不过第二象限,即斜率大于0且与y轴的截距不大于0.[尝试解答] (1)法一:将直线l的方程整理为y-=a, ∴直线l的斜率为a,且过定点A,而点A在第一象限内,故不论a为何值,l恒过第一象限.法二:直线l的方程可化为(5x-1)a-(5y-3)=0.∵上式对任意的a总成立,必有即即l过定点A.以下同法一.(2)直线OA的斜率为k==3.如图所示,要使l不经过第二象限,需斜率a≥kOA=3,∴a的取值范围为[3,+∞).含有一个参数的直线方程,一般是过定点的,这里对一般式灵活变形后发现问题是解决问题的关键,在变形后特点还不明显的情况,可采用法二的解法.练一练2.已知(k+1)x-(k-1)y-2k=0为直线l的方程,求证:不论k取何实数,直线l必过定点,并求出这个定点的坐标.解:整理直线l的方程得(x+y)+k(x-y-2)=0.无论k取何值,该式恒成立,所以解得所以直线l经过定点M(1,-1). 讲一讲 3.(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值;(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?[思路点拨] 由平行或垂直可得到两直线斜率的关系式,然后可列方程求解,注意斜率不存在的情况.[尝试解答] (1)法一:①若m+1=0,即m=-1时,直线l1:x+2=0与直线l2:x-3y+2=0显然不平行.②若m+1≠0,即m≠-1时,直线l1,l2的斜率分别为k1=-,k2=-,若l1∥l2时,k1=k2,即-=-,解得m=2或m=-3,经验证,m=2或-3符合条件,所以m的值为2或-3.法二:令2×3=m(m+1),解得m=-3或m=2.当m=-3时,l1:x-y+2=0,l2:3x-3y+2=0,显然l1与l2不重合,∴l1∥l2.同理当m=2时,l1:2x+3y+4=0,l2:2x+3y-2=0,l1与l2不重合,∴l1∥l2,∴m的值为2或-3.(2)法一:由题意,直线l1⊥l2,①若1-a=0,即a=1时,直线l1:3x-1=0与直线l2:5y+2=0,显然垂直.②若2a+3=0,即a=-时,直线l1:x+5y-2=0与直线l2:5x-4=0不垂直.③若1-a≠0,且2a+3≠0,则直线l1,l2的斜率k1,k2都存在,k1=-,k2=-,当l1⊥l2时,k1·k2=-1,即·=-1,所以a=-1.综上可知,当a=1或a=-1时,直线l1⊥l2.法二:由直线l1⊥l2,所以(a+2)(a-1)+(1-a)(2a+3)=0,解得a=±1.将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2. (1)利用一般式解决直线平行与垂直问题的策略直线l1:A1x+B1y+C1=0,直线l2:A2x+B2y+C2=0,①若l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0).②若l1⊥l2⇔A1A2+B1B2=0.(2)与已知直线平行(垂直)的直线方程的求法①与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0,(m≠C).②与直线Ax+By+C=0垂直的直线方程可设为Bx-Ay+m=0.练一练3.已知直线l的方程为3x+4y-12=0,求直线l′的一般式方程,l′满足:(1)过点(-1,3),且与l平行;(2)过点(-1,3),且与l垂直.解:法一:由题设l的方程可化为y=-x+3,∴l的斜率为-.(1)由l′与l平行,∴l′的斜率为-.又∵l′过(-1,3),由点斜式知方程为y-3=-(x+1),即3x+4y-9=0.(2)由l′与l垂直,∴l′的斜率为,又过(-1,3),由点斜式可得方程为y-3=(x+1),即4x-3y+13=0.法二:(1)由l′与l平行,可设l′方程为3x+4y+m=0.将点(-1,3)代入上式得m=-9.∴所求直线方程为3x+4y-9=0.(2)由l′与l垂直,可设其方程为4x-3y+n=0.将(-1,3)代入上式得n=13.∴所求直线方程为4x-3y+13=0.——————————[课堂归纳·感悟提升]————————————— 1.本节课的重点是了解二元一次方程与直线的对应关系,掌握直线方程的一般式,能根据所给条件求直线方程,并能在几种形式间相互转化.难点是能根据所给条件求直线方程并能在几种形式间相互转化.2.本节课要重点掌握的规律方法(1)求直线一般式方程的策略,见讲1.(2)求参数的值或范围的方法,见讲2.(3)由一般式解决平行与垂直问题的策略及与已知直线平行或垂直的直线方程的求法,见讲33.本节课的易错点是利用一般式求解平行或垂直问题中求参数的值或范围中易忽视讨论,如讲3.课下能力提升(十九)[学业水平达标练]题组1 直线的一般式方程1.直线x-y+1=0的倾斜角为(  )A.30°B.60°C.120°D.150°解析:选A 由直线的一般式方程,得它的斜率为,从而倾斜角为30°.2.斜率为2,且经过点A(1,3)的直线的一般式方程为________.解析:由直线点斜式方程可得y-3=2(x-1),化成一般式为2x-y+1=0.答案:2x-y+1=03.若方程Ax+By+C=0表示直线,则A、B应满足的条件为________.解析:由二元一次方程表示直线的条件知A、B至少有一个不为零即A2+B2≠0.答案:A2+B2≠04.已知直线l的倾斜角为60°,在y轴上的截距为-4,则直线l的点斜式方程为________;截距式方程为________;斜截式方程为________;一般式方程为________. 解析:点斜式方程:y+4=(x-0),截距式方程:+=1,斜截式方程:y=x-4,一般式方程:x-y-4=0.答案:y+4=(x-0) +=1 y=x-4 x-y-4=0题组2 由含参一般式求参数的值或取值范围5.(2016·临沂高一检测)已知过点A(-5,m-2)和B(-2m,3)的直线与直线x+3y-1=0平行,则m的值为(  )A.4B.-4C.10D.-10解析:选A ∵kAB=,直线x+3y-1=0的斜率为k=-,∴由题意得=-,解得m=4.6.直线(m+2)x+(m2-2m-3)y=2m在x轴上的截距为3,则实数m的值为(  )A.B.-6C.-D.6解析:选B 令y=0,则直线在x轴上的截距是x=,∴=3,∴m=-6.7.直线(2m-1)x-(m+3)y-(m-11)=0恒过的定点坐标是________.解析:原方程可化为m(2x-y-1)-(x+3y-11)=0.∵对任意m∈R,方程恒成立,∴解得∴直线恒过定点(2,3).答案:(2,3)8.已知直线l1的斜率为k1=,直线l2经过点A(3a,-2),B(0,a2+1),且l1⊥l2,求实数a的值.解:∵l1⊥l2,∴k1·k2=-1,即×=-1,解得a=1,或a=3,∴a=1,或a=3时,l1⊥l2.题组3 一般式形式下的平行与垂直问题的策略9.若直线l1:ax+(1-a)y=3与l2:(a-1)x+(2a+3)y=2互相垂直,则实数a =________.解析:因为两直线垂直,所以a(a-1)+(1-a)(2a+3)=0,即a2+2a-3=0,解得a=1,或a=-3.答案:1或-310.求与直线3x+4y+1=0平行,且在两坐标轴上的截距之和为的直线l的方程.解:法一:由题意,设直线l的方程为3x+4y+m=0(m≠1),令x=0,得y=-;令y=0,得x=-,所以-+=,解得m=-4.所以直线l的方程为3x+4y-4=0.法二:由题意,直线l不过原点,则在两坐标轴上的截距都不为0.可设l的方程为+=1(a≠0,b≠0),则有解得所以直线l的方程为3x+4y-4=0.[能力提升综合练]1.如果ax+by+c=0表示的直线是y轴,则系数a,b,c满足条件(  )A.bc=0B.a≠0C.bc=0且a≠0D.a≠0且b=c=0解析:选D y轴方程表示为x=0,所以a,b,c满足条件为a≠0且b=c=0.2.两直线mx+y-n=0与x+my+1=0互相平行的条件是(  )A.m=1B.m=±1C.D.或解析:选D 根据两直线平行可得=,所以m=±1,又两直线不可重合,所以m=1时,n≠-1;m=-1时,n≠1.3.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是(  )A.2y-x-4=0B.2x-y-1=0C.x+y-5=0D.2x+y-7=0 解析:选C 由x-y+1=0得A(-1,0),又P的横坐标为2,且|PA|=|PB|,∴P为线段AB中垂线上的点,且B(5,0).PB的倾斜角与PA的倾斜角互补,则斜率互为相反数,故PB的斜率kPB=-1,则方程为y=-(x-5),即x+y-5=0.4.若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m满足________.解析:当2m2+m-3=0时,m=1或m=-;当m2-m=0时,m=0或m=1.要使方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则2m2+m-3,m2-m不能同时为0,∴m≠1.答案:m≠15.已知直线l的斜率是直线2x-3y+12=0的斜率的,l在y轴上的截距是直线2x-3y+12=0在y轴上的截距的2倍,则直线l的方程为________.解析:由2x-3y+12=0知,斜率为,在y轴上截距为4.根据题意,直线l的斜率为,在y轴上截距为8,所以直线l的方程为x-3y+24=0.答案:x-3y+24=06.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列条件分别求m的值.(1)在x轴上的截距为1;(2)斜率为1;(3)经过定点P(-1,-1).解:(1)∵直线过点P′(1,0),∴m2-2m-3=2m-6.解得m=3或m=1.又∵m=3时,直线l的方程为y=0,不符合题意,∴m=1.(2)由斜率为1,得解得m=.(3)直线过定点P(-1,-1),则-(m2-2m-3)-(2m2+m-1)=2m-6, 解得m=,或m=-2.7.一河流同侧有两个村庄A、B,两村庄计划在河上共建一水电站供两村使用,已知A、B两村到河边的垂直距离分别为300m和700m,且两村相距500m,问:水电站建于何处送电到两村的电线用料最省?解:如图,以河流所在直线为x轴,y轴通过点A,建立直角坐标系,则点A(0,300),B(x,700),设B点在y轴上的射影为H,则x=|BH|==300,故点B(300,700),设点A关于x轴的对称点A′(0,-300),则直线A′B的斜率k=,直线A′B的方程为y=x-300.令y=0得x=90,得点P(90,0),故水电站建在河边P(90,0)处电线用料最省.

10000+的老师在这里下载备课资料