3.3.1两直线的交点坐标
问题提出1.在平面几何中,我们只能对直线作定性的研究,如平行、相交、垂直等.在平面直角坐标系中,我们用二元一次方程表示直线,从而可以对直线进行定量分析,如确定直线的斜率、截距等.2.在同一平面内,两条直线之间存在平行、相交、重合等位置关系,这些位置关系的基本特征与公共点的个数有关.因此,如何将两直线的交点进行量化,便成为一个新的课题.
知识探究(一):两条直线的交点坐标思考1:若点P在直线l上,则点P的坐标(x0,y0)与直线l的方程Ax+By+C=0有什么关系?思考2:直线2x+y-1=0与直线2x+y+1=0,直线3x+4y-2=0与直线2x+y+2=0的位置关系分别如何?
思考3:能根据图形确定直线3x+4y-2=0与直线2x+y+2=0的交点坐标吗?有什么办法求得这两条直线的交点坐标?xyoP
思考4:一般地,若直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0相交,如何求其交点坐标?几何元素及关系代数表示点AA(a,b)直线l点A在直线l上直线l1与l2的交点是A点A的坐标是方程组的解
思考5:对于两条直线和,若方程组有唯一解,有无数组解,无解,则两直线的位置关系如何?ïîïíìÛïîïíì平行重合相交无解无穷多解唯一解212121,,,llllll
例1:求下列两条直线的交点:l1:3x+4y-2=0;l2:2x+y+2=0.例2:求经过原点且经过以下两条直线的交点的直线方程:l1:x-2y+2=0,l2:2x-y-2=0.解:解方程组3x+4y-2=02x+y+2=0∴l1与l2的交点是M(-2,2)解:解方程组x-2y+2=02x-y-2=0∴l1与l2的交点是(2,2)设经过原点的直线方程为y=kx把(2,2)代入方程,得k=1,所求方程为x-y=0x=-2y=2得x=2y=2得xyM-220l1l2
探究:=0时,方程为3x+4y-2=0xy=1时,方程为5x+5y=0l2=-1时,方程为x+3y-4=00l1l3上式可化为:(3+2λ)x+(4+λ)y+2λ-2=0发现:此方程表示经过直线3x+4y-2=0与直线2x+y+2=0交点的直线束(直线集合)知识探究(二):过交点的直线系
练习:求经过原点及两条直线l1:3x+4y-2=0,l2:2x+y+2=0的交点的直线的方程.A1x+B1y+C1+λ(A2x+B2y+C2)=0是过直线A1x+B1y+C1=0和A2x+B2y+C2=0的交点的直线系方程。共点直线系方程:
思考:方程表示的直线包括过交点M(-2,2)的所有直线吗?
理论迁移例3判断下列各对直线的位置关系,如果相交,求出其交点的坐标.(1)(2)(3)
已知两直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,问当m为何值时,直线l1与l2:(1)相交,(2)平行,(3)垂直练习
课堂小结两直线交点的求法---联立方程组。两直线位置关系的判断:解方程组,根据解的个数。共点直线系方程及其应用
数学学习快乐兰炼二中刘克江兰炼二中