--[备考方向要明了]考什么怎么考1.能用解方程组的方法求两条相交直线的交点坐标.2.掌握两点间的距离公式、点到直线的距离公式、会求两条平行直线间的距离.1.两条直线的交点坐标一般是不单独命题的,常作为知识点出现在相关的位置关系中.2.两点间距离公式是解析几何的一个根本知识点,点到直线的距离公式是高考考察的重点,一般将这两个知识点结合直线与圆或圆锥曲线的问题中来考察.[归纳·知识整合]1.两条直线的交点设两条直线的方程为l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,那么两条直线的交点坐标就是方程组的解,(1)假设方程组有唯一解,那么两条直线相交,此解就是交点的坐标;(2)假设方程组无解,那么两条直线无公共点,此时两条直线平行,反之,亦成立.[探究] 1.如何用两直线的交点判断两直线的位置关系?提示:当两条直线有一个交点时,两直线相交;没有交点时,两条直线平行,有无数个交点时,两条直线重合.2.距离-.word.zl-
--点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=点P0(x0,y0)到直线l:Ax+By+C=0的距离d=两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离d=[探究] 2.使用点到直线的距离公式和两条平行线间的距离公式时应注意什么?提示:使用点到直线距离公式时要注意将直线方程化为一般式.使用两条平行线间距离公式时,要将两直线方程化为一般式且x、y的系数对应相等.[自测·牛刀小试]1.(教材习题改编)原点到直线x+2y-5=0的距离是( )A.1 B.C.2D.解析:选D d==.2.点A在x轴上,点B在y轴上,线段AB的中点M的坐标是(3,4),那么AB的长为( )A.10B.5C.8D.6解析:选A 设A(a,0),B(0,b),那么a=6,b=8,即A(6,0),B(0,8).所以|AB|===10.3.假设三条直线2x+3y+8=0,x-y-1=0和x+by=0相交于一点,那么b=( )A.-1B.--.word.zl-
--C.2D.解析:选B 由得将其代入x+by=0,得b=-.4.直线l1与l2:x+y-1=0平行,且l1与l2的距离是,那么直线l1的方程为________.解析:设直线l1的方程为x+y+λ=0,那么==,解得λ=1或λ=-3.即直线l1的方程为x+y+1=0或x+y-3=0.答案:x+y+1=0或x+y-3=05.点(2,3)关于直线x+y+1=0的对称点是________.解析:设对称点为(a,b),那么解得答案:(-4,-3)两条直线的交点问题[例1] (1)经过直线l1:x+y+1=0与直线l2:x-y+3=0的交点P,且与直线l3:2x-y+2=0垂直的直线l的方程是________________.(2)两直线l1:mx+8y+n=0与l2:2x+my-1=0,假设l1与l2相交,那么实数m,n满足的条件是__________.[自主解答] (1)法一:由方程组解得即点P(-2,1),-.word.zl-
--∵l3⊥l,∴k=-,∴直线l的方程为y-1=-(x+2),即x+2y=0.法二:∵直线l过直线l1和l2的交点,∴可设直线l的方程为x+y+1+λ(x-y+3)=0,即(1+λ)x+(1-λ)y+1+3λ=0.∵l与l3垂直,∴2(1+λ)-(1-λ)=0,解得λ=-.∴直线l的方程为x+y=0,即x+2y=0.(2)因为两直线l1与l2相交,所以当m=0时,l1的方程为y=-,l2的方程为x=,两直线相交,此时m,n满足条件m=0,n∈R;当m≠0时,由两直线相交.所以≠,解得m≠±4,此时,m,n满足条件m≠±4,n∈R.[答案] (1)x+2y=0 (2)m≠±4,n∈R假设将本例(1)中条件“垂直〞改为“平行〞,试求l的方程.解:由方程组解得即点P(-2,1).又l∥l3,即k=2,故直线l的方程为y-1=2(x+2),即2x-y+5=0.———————————————————经过两条直线交点的直线方程的设法经过两相交直线A1x+B1y+C1=0和A2x+B2y+C2=0的交点的直线系方程为A1x+-.word.zl-
--B1y+C1+λ(A2x+B2y+C2)=0(这个直线系方程中不包括直线A2x+B2y+C2=0)或m(A1x+B1y+C1)+n(A2x+B2y+C2)=0.1.设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0.(1)证明l1与l2相交;(2)证明l1与l2的交点在椭圆2x2+y2=1上.证明:(1)反证法:假设l1与l2不相交,那么l1与l2平行,那么有k1=k2,代入k1k2+2=0得k=k=-2,显然不成立,与矛盾,从而k1≠k2,即l1与l2相交.(2)由方程组解得交点P的坐标为,而2x2+y2=22+2===1,即交点P(x,y)在椭圆2x2+y2=1上.距离公式的应用[例2] 点P(2,-1).(1)求过P点且与原点距离为2的直线l的方程;(2)求过P点且与原点距离最大的直线l的方程,最大距离是多少?(3)是否存在过P点且与原点距离为6的直线?假设存在,求出方程;假设不存在,请说明理由.[自主解答] (1)过P点的直线l与原点距离为2,而P点坐标为(2,-1),可见,-.word.zl-
--过P(2,-1)且垂直于x轴的直线满足条件,此时l的斜率不存在,其方程为x=2.假设斜率存在,设l的方程为y+1=k(x-2),即kx-y-2k-1=0.由得=2,解得k=.此时l的方程为3x-4y-10=0.综上,可得直线l的方程为x=2或3x-4y-10=0.(2)作图可得过P点与原点O的距离最大的直线是过P点且与PO垂直的直线,如图.由l⊥OP,得klkOP=-1,所以kl=-=2.由直线方程的点斜式得y+1=2(x-2),即2x-y-5=0.即直线2x-y-5=0是过P点且与原点O距离最大的直线,最大距离为=.(3)由(2)可知,过P点不存在到原点距离超过的直线,因此不存在过P点且到原点距离为6的直线.———————————————————求两条平行线间距离的两种思路(1)利用“化归〞法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式.2.A(4,-3),B(2,-1)和直线l:4x+3y-2=0,在坐标平面内求一点P,使|PA-.word.zl-
--|=|PB|,且点P到直线l的距离为2.解:设点P的坐标为(a,b).∵A(4,-3),B(2,-1),∴线段AB的中点M的坐标为(3,-2).而AB的斜率kAB==-1,∴线段AB的垂直平分线方程为y+2=x-3,即x-y-5=0.∵点P(a,b)在上述直线上,∴a-b-5=0.①又点P(a,b)到直线l:4x+3y-2=0的距离为2,∴=2,即4a+3b-2=±10,②由①②联立可得或∴所求点P的坐标为(1,-4)或.对称问题[例3] 直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程.[自主解答] (1)设A′(x,y),再由解得故A′.(2)在直线m上取一点,如M(2,0),那么M(2,0)关于直线l的对称点M′必在直线m′上.设对称点M′(a,b),那么-.word.zl-
--得M′.设直线m与直线l的交点为N,那么由得N(4,3).又∵m′经过点N(4,3),∴由两点式得直线m′的方程为9x-46y+102=0.———————————————————求点关于直线对称问题的根本方法(1)点与对称点的连线与对称轴垂直;(2)点与对称点的中点在对称轴上.利用以上两点建立方程组可求点关于直线的对称问题.3.直线y=2x是△ABC的一个内角平分线所在的直线,假设点A(-4,2),B(3,1),求点C的坐标.解:把A,B两点的坐标代入y=2x知,A,B不在直线y=2x上,因此y=2x为∠ACB的平分线,设点A(-4,2)关于y=2x的对称点为A′(a,b),那么kAA′=,线段AA′的中点坐标为,∵解得∴A′(4,-2).∵y=2x是∠ACB平分线所在直线的方程,∴A′在直线BC上,∴直线BC的方程为=,即3x+y-10=0.由解得∴C(2,4).-.word.zl-
--1条规律——与直线垂直及平行的直线系的设法与直线Ax+By+C=0(A2+B2≠0)垂直和平行的直线方程可设为:(1)垂直:Bx-Ay+m=0;(2)平行:Ax+By+n=0.1种思想——转化思想在对称问题中的应用一般地,对称问题包括点关于点的对称,点关于直线的对称,直线关于点的对称,直线关于直线的对称等情况,上述各种对称问题最终化归为点的对称问题来解决.2个注意点——判断直线位置关系及运用两平行直线间的距离公式的注意点(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,假设直线无斜率时,要单独考虑;(2)运用两平行直线间的距离公式d=的前提是将两方程中的x,y的系数化为分别相等.创新交汇——新定义下的直线方程问题1.直线方程是高考的常考内容,但一般不单独考察,常与圆、圆锥曲线、函数与导数、三角函数等内容相结合,以交汇创新的形式出现在高考中.2.解决新定义下的直线方程的问题,难点是对新定义的理解和运用,关键是要分析新定义的特点,把新定义所表达的问题的本质弄清楚,并能够应用到具体的解题过程中.[典例] (2013·XX模拟)在平面直角坐标系中,设点P(x,y),定义[OP]=|x|+|y|,其中O为坐标原点.对于以下结论:①符合[OP]=1的点P的轨迹围成的图形的面积为2;②设P为直线x+2y-2=0上任意一点,那么[OP]的最小值为1;-.word.zl-
--其中正确的结论有________(填上你认为正确的所有结论的序号).[解析] ①由[OP]=1,根据新定义得,|x|+|y|=1,上式可化为y=-x+1(0≤x≤1),y=-x-1(-1≤x≤0),y=x+1(-1≤x≤0),y=x-1(0≤x≤1),画出图象如下图.根据图形得到四边形ABCD为边长是的正方形,所以面积等于2,故①正确;②当点P为时,[OP]=|x|+|y|=+0