第六课时两直线的交点坐标一、教学目标1、知识与技能:(1)直线和直线的交;(2)二元一次方程组的解。2、过程和方法:(1)学习两直线交点坐标的求法,以及判断两直线位置的方法。(2)掌握数形结合的学习法。(3)组成学习小组,分别对直线和直线的位置进行判断,归纳过定点的肓线系方程。3、情态和价值:(1)通过两直线交点和二元一次方程组的联系,从而认识事物之问的内的联系。(2)能够用辩证的观点看问题。二、教学重点,难点重点:判断两肓线是否相交,求交点坐标。难点:两直线相交与二元一次方程的关系。三、教学方法:启发引导式:在学生认识直线方程的基础上,启发学住理解两直线交点与二元一次方程组的的相互关系。引导学纶将两直线交点的求解问题转化为相应的直线方程构成的二元一次方程组解的问题。由此体会“形”的问题由“数”的运算来解决。教具:川POWERPOINT课件的辅助式教学四、教学过程(一)、情境设置,导入新课用大屏幕打出直角处标系中两总线,移动直线,让学生观察这两白线的位置关系。课堂设问一:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程冇何关系?(二)、研探新知1、分析任务,分组讨论,判断两直线的位置关系己知两岂线LI:Alx+Bly+C1二0,L2:A2x+B2y+C2=0如何判断这两条直线的关系?教师引导学生先从点与直线的位置关系入手,看表一,并填空。几何元素及关系代数表示点AA(a,b)直线LL:Ax+By+C二0点A在直线上
直线L1与L2的交点A课堂设问二:如果两条直线和交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?学牛进行分组讨论,教师引导学牛归纳出两总线是否相交与其方程所组成的方程组有何关系?(1)若二元一次方程组有唯一解,L1与L2相交。(2)若二元一次方程组无解,则L1与L2平行。(3)若二元一•次方程组有无数解,则L1与L2重合。课后探究:两直线是否相交少其方程组成的方程组的系数有何关系?2、例题讲解,规范表示,解决问题例题1:求F列两直线交点坐标:L1:3x+4y-2二0,LI:2x+y+2=0解:解方程组得x=-2,y=2错误!嵌入对象无效。所以L1与L2的交点坐标为M(-2,2),如图3。3。1。教师可以让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然示才进行讲解。同类练习:书木110页第1,2题。例2判断下列各对直线的位置关系。如果和交,求出交点坐标。(1)LI:x-y二0,L2:3x+3y-10二0(2)LI:3x-y二0,L2:6x-2y=0(3)LI:3x+4y-5二0,L2:6x+8y-10=0这道题可以作为练习以巩固判断两直线位置关系。(三)、启发拓展,灵活应用。课堂设问一。当错误!嵌入对象无效。错误!嵌入对象无效。变化时,方程3x+4y-2+错误!
嵌入对象无效。(2x+y+2)二0表示何图形,图形有何特点?求出图形的交点坐标。(1)、可以一用信息技术,当取不同值时,通过各种图形,经过观察,讣学牛从直观上得出结论,同时发现这些直线的共同特点是经过同一点。(2)、找出或猜想这个点的处标,代入方程,得出结论。(3)、结论,方程表示经过这两条直线L1与L2的交点的直线的集合。例3、已知错误!嵌入对象无效。为实数,两直线错误!嵌入对象无效。:错误!嵌入对象无效。‘错误!嵌入对象无效。:错误!嵌入对象无效。相交于一点’求证交点不川能在笫—•象限及错误!嵌入对象无效。轴上分析:先通过联立方程组将交点坐标解出,再判断交点横纵坐标的范围.解:解方程组若八>°,则错误!嵌入对象无效。>1•当错误!嵌入对错误!嵌入对象无效。象无效。>1时,-<0,此时交点在第二彖限内・错误!嵌入对象无效。乂因为错误!嵌入对象无效。为任意实数时,都有错误!嵌入对象无效。错误!嵌入对象无效。1>0,故错误!嵌入对象无效。工0因为错误!嵌入对象无效。工1(否则两直线平行,无交点),所以,交点不可能在错误!嵌入对象无效。轴上,得交点(一错误!嵌入对象无效。(四)、小结:直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题來解决,并能进行应川。(五)、练习及作业:1、光线从M(-2,3)射到x轴上的一点P(1,0)后被x轴反射,求反射光线所在的直线方程2、求满足下列条件的直线方程。经过两直线2x-3y+10二0与3x»4y-2=0的交点,和直线3x・2y+4=0垂直。五、教后反思: