新人教A版必修2 高中数学 3.3.1 两直线的交点坐标 导学案
加入VIP免费下载

新人教A版必修2 高中数学 3.3.1 两直线的交点坐标 导学案

ID:1231121

大小:198.5 KB

页数:7页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.3.1两条直线的交点坐标课前预习学案一、预习目标根据直线的方程判断两直线的位置关系和已知两相交直线求交点二、预习内容1、阅读课本102-104,找出疑惑之处。同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容2、知识概览①两直线相交,则交点同时在这两条直线上,交点的坐标一定是两直线方程的解,若两直线的方程组成的方程组只有一个公共解,则以这个解为坐标的点必是两直线的交点.②两直线A1x+B1y+C1=0与A2x+B2y+C2=0的交点情况,取决于方程组的解的情况.若方程组有唯一解,则两直线相交.若方程组无解,则两直线平行.若方程组有无数个解,则两直线重合.3、思考当λ变化时,方程3x+4y-2+λ(2x+y+2)=0表示什么图形?图形有何特点?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中 疑惑点疑惑内容课内探究学案一、学习目标掌握判断两条直线相交的方法,会通过解方程组求两条直线的交点坐标;1.了解过两条直线交点的直线系方程的问题.教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点.教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.二、学习过程自主学习【知识点一】、两条直线的交点如果两条直线相交,则交点坐标分别适合两条直线的方程,即();把两条直线的方程组成方程组,若方程组有()解,则两条直线相交,此解就是交点的坐标;若方程组(),则两条直线无公共点,此时两条直线平行;若方程组有(),则两条直线有无数个公共点,此时两条直线重合.【知识点二】、直线系方程具有某一共同属性的一类直线的集合称为直线系,表示直线系的方程叫做直线系方程.方程的特点是除含坐标变量x、y以外,还含有待定系数(也称参变量).(1)共点直线系方程:经过两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都得不到A2x+B2y+C2=0,因此它不能表示直线l2.(2)平行直线系:与直线Ax+By+C=0平行的直线系方程是(),λ是参变量.(3)垂直直线系方程:与Ax+By+C=0(A≠0,B≠0)垂直的直线系方程是()(4)特殊平行线与过定点(x0,y0)的直线系:当斜率k一定而m变动时,() 表示斜率为k的平行线系,()表示过定点(x0,y0)的直线系(不含直线x=x0).问题设两条直线的方程为l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0,如果这两条直线相交,你能分析它们的系数满足什么关系吗?探究:我们可以先解由两直线方程联立的方程组①×B2-②×B1,得(A1B2-A2B1)x+B2C1-B1C2=0.当A1B2-A2B1≠0时,得x=;再由①×A2-②×A1,当A1B2-A2B1≠0时,可得y=.因此,当A1B2-A2B1≠0时,方程组有唯一一组解x、y.这时两条直线相交,交点的坐标就是(x,y).因此这两条直线相交时,系数满足的关系为A1B2-A2B1≠0.精讲点拨例1求下列两直线的交点坐标,l1:3x+4y-2=0,l2:2x+y+2=0.变式训练求经过原点且经过以下两条直线的交点的直线方程.l1:x-2y+2=0,l2:2x-y-2=0.例2判断下列各对直线的位置关系.如果相交,求出交点坐标.(1)l1:x-y=0,l2:3x+3y-10=0.(2)l1:3x-y+4=0,l2:6x-2y-1=0.(3)l1:3x+4y-5=0,l2:6x+8y-10=0..变式训练判定下列各对直线的位置关系,若相交,则求交点.(1)l1:7x+2y-1=0,l2:14x+4y-2=0.(2)l1:(-)x+y=7,l2:x+(+)y-6=0.(3)l1:3x+5y-1=0,l2:4x+3y=5.问题当λ变化时,方程3x+4y-2+λ(2x+y+2)=0表示什么图形?图形有何特点? 例3求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程.变式训练求经过两条直线l1:x+y-4=0和l2:x-y+2=0的交点,且与直线2x-y-1=0垂直的直线方程.例4求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标变式训练当a为任意实数时,直线(a-1)x-y+2a+1=0经过的定点是()A.(2,3)B.(-2,3)C.(1,)D.(-2,0)反思总结1.两条直线的交点。直线相交的问题转化为求方程组的解的问题,且解的个数决定两条直线的位置关系.两直线的交点坐标对应的就是两直线方程所组成方程组的解.2.直线系方程。如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.当堂检测1.两条直线l1:2x+3y-m=0与l2:x-my+12=0的交点在y轴上,那么m的值为()A.-24B.6C.±6D.以上答案均不对2.无论k为何值,直线(k+2)x+(1-k)y-4k-5=0都过一个定点,则定点坐标为()A.(1,3)B.(-1,3)C.(3,1)D.(3,-1)3.求经过两条直线l1:x+y-4=0和l2:x-y+2=0的交点,且与直线2x-y-1=0平行直线方程.参考答案1.解析:l1:2x+3y-m=0在y轴上的截距为,l2:x-my+12=0在y轴上的截距为,根据两直线的交点在y轴上得m=±6.答案:C2.思路解析:直线方程展开按是否含参数k合并同类项,得(2x+y-5)+k(x-y-4)=0,由直线系方程,知此直线过两直线的交点,即为解得 交点为(3,-1).3.解析:由∴l1与l2的交点为(1,3).(1)解法一:设与直线2x-y-1=0平行的直线为2x-y+c=0,则2-3+c=0,∴c=1.∴所求直线方程为2x-y+1=0.解法二:∵所求直线的斜率k=2,且经过点(1,3),∴所求直线方程为y-3=2(x-1),即2x-y+1=0.课后巩固练习与提高知能训练课本本节练习1、2.拓展提升1.已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足为(1,p),则m-n+p为()A.24B.20C.0D.-42.已知点P(-1,0),Q(1,0),直线y=-2x+b与线段PQ相交,则b的取值范围是()A.[-2,2]B.[-1,1]C.[-,]D.[0,2]3.三条直线x+y=2、x-y=0、x+ay=3构成三角形,求a的取值范围.4.已知两直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,当m为何值时,直线l1与l2:①相交;②平行;③重合;④垂直.5.三条直线l1:ax+y+1=0,l2:x+ay+1=0,l3:x+y+a=0构成三角形的条件是什么? (2)由可得直线x+y=2和直线x-y=0的交点坐标为(1,1).若三线共点,则点(1,1)在直线x+ay=3上,所以有1+a=3.解得a=2.综上,可知a满足的条件为a{-1,1,2}.4.解:联立方程组(1)当m=0时,则l1:x+6=0,l2:-2x+3y=0,∴l1、l2相交.当m=2时,则l1:x+2y+6=0,l2:3y+4=0,∴l1、l2相交.(2)当m≠0且m≠2时,,,.若=m=-1或m=3;若=m=3.∴当m≠-1且m≠3时(≠),方程组有唯一解,l1、l2相交.当m=-1时(=≠),方程组无解,l1与l2平行. 当m=3时(==),方程组有无数解,l1与l2重合.(3)当m-3+3m=0即m=时,l1与l2垂直(∵l1⊥l2A1A2+B1B2=0).点评:要注意培养学生分类讨论的思想.5.解析:三直线构成三角形,则需任意两条直线都相交,且不能相交于一点.注意不要忽略三线交于同一点的情况.所以可以从正反两个方向来思考.解法一:任两条直线都相交,则,,故a≠±1.又有三条直线不交于同一点,故其中两条直线的交点(-1-a,1)不在直线ax+y+1=0上,即a(-1-a)+1+1≠0,a2+a-2≠0,(a+2)(a-1)≠0,∴a≠-2,a≠1.综合上述结果,三条直线构成三角形的条件是a≠±1,a≠-2.解法二:因为三条直线能构成三角形,所以三条直线两两相交且不共点,即任意两条直线都不平行,且三线不共点.可以把不能构成三角形的情况排除掉.若三条直线交于同一点,则其中两条直线的交点(-1-a,1)在直线ax+y+1=0上,∴a(-a-1)+1+1=0,∴a=1或a=-2.若l1∥l2,则有,a=1;若l1∥l3,则有,a=1;若l2∥l3,则有,a=±1.所以若三条直线构成三角形,则需a≠±1,a≠-2.

10000+的老师在这里下载备课资料