新人教A版必修2 高中数学 3.3.1 两直线的交点坐标 教案
加入VIP免费下载

新人教A版必修2 高中数学 3.3.1 两直线的交点坐标 教案

ID:1231282

大小:69 KB

页数:4页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
直线的交点坐标与距离公式备考策略主标题:直线的交点坐标与距离公式备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道.关键词:直线的交点坐标与距离公式,知识总结备考策略难度:3重要程度:2内容:1.两条直线的交点直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1与l2的交点坐标就是方程组的解.2.几种距离1.两点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=.2.点P0(x0,y0)到直线l:Ax+By+C=0的距离d=.3.两条平行线Ax+By+C1=0与Ax+By+C2=0(其中C1≠C2)间的距离d=.思维规律解题:考点一、两直线的交点与距离例1.(1)求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x-5y+6=0的直线l的方程.(2)已知点P(2,-1),①求过点P且与原点距离为2的直线l的方程;②求过点P且与原点距离最大的直线l的方程,并求最大距离.解答 (1)法一 先解方程组得l1、l2的交点坐标为(-1,2),再由l3的斜率求出l的斜率为-,于是由直线的点斜式方程求出l:y-2=-(x+1),即5x+3y-1=0. 法二 由于l⊥l3,故l是直线系5x+3y+C=0中的一条,而l过l1、l2的交点(-1,2),故5×(-1)+3×2+C=0,由此求出C=-1,故l的方程为5x+3y-1=0.法三 由于l过l1、l2的交点,故l是直线系3x+2y-1+λ(5x+2y+1)=0中的一条,将其整理,得(3+5λ)x+(2+2λ)y+(-1+λ)=0,其斜率-=-,解得λ=,代入直线系方程即得l的方程为5x+3y-1=0.(2)①若直线l的斜率不存在,则直线l的方程为x=2满足条件.若斜率存在,设l的方程为y+1=k(x-2),即kx-y-2k-1=0.由已知,得=2,解得k=.此时l的方程为3x-4y-10=0.综上,可得直线l的方程为x=2或3x-4y-10=0.②作图可得过P点与原点O距离最大的直线是过P点且与PO垂直的直线,如图.由l⊥OP,得klkOP=-1,所以kl=-=2.由点斜式得y+1=2(x-2),2x-y-5=0.∴直线2x-y-5=0是过P点且与原点O距离最大的直线,最大距离为=. 规律方法2 求点到直线距离的最值问题的方法:(1)直接利用点到直线的距离公式建立距离关于斜率k的代数关系式求解;(2)从几何中位置关系的角度,利用几何关系求解.在解决解析几何问题时,要善于发现其中包含的几何关系,充分利用几何性质进行求解.考点二、对称问题例2 光线由点P(-1,3)射出,遇直线l:x+y+1=0反射,反射光线经过点Q(4,-2),求入射光线与反射光线所在的直线方程.解答 设P(-1,3)关于直线x+y+1=0的对称点为P′(x1,y1),点Q(4,-2)关于直线x+y+1=0的对称点为Q′(x2,y2).∴⇒所以P′(-4,0).同理有Q′(1,-5).这样,反射光线所在直线为P′Q,斜率k1==-.直线方程为x+4y+4=0.入射光线所在直线为PQ′,斜率k2==-4,直线方程为4x+y+1=0.∴入射光线直线方程为4x+y+1=0,反射光线直线方程为x+4y+4=0.备考策略:1.求点到直线距离的最值问题的方法:(1)直接利用点到直线的距离公式建立距离关于斜率k的代数关系式求解;(2)从几何中位置关系的角度,利用几何关系求解.在解决解析几何问题时,要善于发现其中包含的几何关系,充分利用几何性质进行求解.2.(1) (2)两点关于点对称,两点关于直线对称的常见结论有:点(x,y)关于x轴、y轴、直线x-y=0、直线x+y=0及原点的对称点分别为(x,-y)、(-x,y)、(y,x)、(-y,-x)和(-x,-y).

10000+的老师在这里下载备课资料