5.3两点间距离公式、线段的定比分点与图形的平移●知识梳理1.设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).∴||=.2.线段的定比分点是研究共线的三点P1,P,P2坐标间的关系.应注意:(1)点P是不同于P1,P2的直线P1P2上的点;(2)实数λ是P分有向线段所成的比,即P1→P,P→P2的顺序,不能搞错;(3)定比分点的坐标公式(λ≠-1).3.点的平移公式描述的是平移前、后点的坐标与平移向量坐标三者之间的关系,特别提示1.定比分点的定义:点P为所成的比为λ,用数学符号表达即为=λ.当λ>0时,P为内分点;λ<0时,P为外分点.2.定比分点的向量表达式:P点分成的比为λ,则=+(O为平面内任一点).3.定比分点的应用:利用定比分点可证共线问题.●点击双基1.(2004年东北三校联考题)若将函数y=f(x)的图象按向量a平移,使图象上点的坐标由(1,0)变为(2,2),则平移后的图象的解析式为A.y=f(x+1)-2B.y=f(x-1)-2C.y=f(x-1)+2D.y=f(x+1)+2解析:由平移公式得a=(1,2),则平移后的图象的解析式为y=f(x-1)+2.答案:C2.(2004年湖北八校第二次联考)将抛物线y2=4x沿向量a平移得到抛物线y2-4y=4x,则向量a为A.(-1,2)B.(1,-2)C.(-4,2)D.(4,-2)解析:设a=(h,k),由平移公式得
代入y2=4x得(-k)2=4(-h),2-2k=4-4h-k2,即y2-2ky=4x-4h-k2,∴k=2,h=-1.∴a=(-1,2).答案:A思考讨论本题不用平移公式代入配方可以吗?提示:由y2-4y=4x,配方得(y-2)2=4(x+1),∴h=-1,k=2.(知道为什么吗?)3.设A、B、C三点共线,且它们的纵坐标分别为2、5、10,则A点分所得的比为A.B.C.-D.-解析:设A点分所得的比为λ,则由2=,得λ=-.答案:C4.若点P分所成的比是λ(λ≠0),则点A分所成的比是____________.解析:∵=λ,∴=λ(-+).∴(1+λ)=λ.∴=.∴=-.答案:-5.(理)若△ABC的三边的中点坐标为(2,1)、(-3,4)、(-1,-1),则△ABC的重心坐标为____________.解析:设A(x1,y1),B(x2,y2),C(x3,y3),则∴
∴重心坐标为(-,).答案:(-,)(文)已知点M1(6,2)和M2(1,7),直线y=mx-7与线段M1M2的交点M分有向线段的比为3∶2,则m的值为____________.解析:设M(x,y),则x===3,y===5,即M(3,5),代入y=mx-7得5=3m-7,∴m=4.答案:4●典例剖析【例1】已知点A(-1,6)和B(3,0),在直线AB上求一点P,使||=||.剖析:||=||,则=或=.设出P(x,y),向量转化为坐标运算即可.解:设P的坐标为(x,y),若=,则由(x+1,y-6)=(4,-6),得解得此时P点坐标为(,4).若=-,则由(x+1,y-6)=-(4,-6)得解得∴P(-,8).综上所述,P(,4)或(-,8).深化拓展本题亦可转化为定比分点处理.由=,得=,则P为的定比分点,λ=,代入公式即可;若=-,则=-,则P为的定比分点,λ=-.由两种方法比较不难得出向量的运算转化为坐标运算,是解决向量问题的一般方法.【例2】已知△ABC的三个顶点坐标分别是A(4,1),B(3,4),C(-1,2),BD是∠ABC的平分线,求点D的坐标及BD的长.
剖析:∵A、C两点坐标为已知,∴要求点D的坐标,只要能求出D分所成的比即可.解:∵|BC|=2,|AB|=,∴D分所成的比λ=.由定比分点坐标公式,得∴D点坐标为(9-5,).∴|BD|==.评述:本题给出了三点坐标,因此三边长度易知,由角平分线的性质通过定比分点可解出D点坐标,适当利用平面几何知识,可以使有些问题得以简化.深化拓展本题也可用如下解法:设D(x,y),∵BD是∠ABC的平分线,∴〈,〉=〈,〉.∴,即=.又=(1,-3),=(x-3,y-4),=(-4,-2),∴=.∴(4+)x+(2-3)y+9-20=0.①又A、D、C三点共线,∴,共线.又=(x-4,y-1),=(x+1,y-2),∴(x-4)(y-2)=(x+1)(y-1).②由①②可解得
∴D点坐标为(9-5,),|BD|=.思考讨论若BD是AC边上的高,或BD把△ABC分成面积相等的两部分,本题又如何求解?请读者思考.【例3】已知在□ABCD中,点A(1,1),B(2,3),CD的中点为E(4,1),将□ABCD按向量a平移,使C点移到原点O.(1)求向量a;(2)求平移后的平行四边形的四个顶点的坐标.解:(1)由□ABCD可得=,设C(x3,y3),D(x4,y4),则又CD的中点为E(4,1),则由①-④得即C(,2),D(,0).∴a=(-,-2).(2)由平移公式得A′(-,-1),B′(-,1),C′(0,0),D′(-1,-2).●闯关训练夯实基础1.(2004年福州质量检查题)将函数y=sinx按向量a=(-,3)平移后的函数解析式为A.y=sin(x-)+3B.y=sin(x-)-3C.y=sin(x+)+3D.y=sin(x+)-3解析:由得∴-3=sin(+).
∴=sin(+)+3,即y=sin(x+)+3.答案:C2.(2003年河南调研题)将函数y=2sin2x的图象按向量a平移,得到函数y=2sin(2x+)+1的图象,则a等于A.(-,1)B.(-,1)C.(,-1)D.(,1)解析:由y=2sin(2x+)+1得y=2sin2(x+)+1,∴a=(-,1).答案:B3.(2004年东城区模拟题)已知点P是抛物线y=2x2+1上的动点,定点A(0,-1),若点M分所成的比为2,则点M的轨迹方程是____________,它的焦点坐标是____________.解析:设P(x0,y0),M(x,y).代入y0=2x02+1得3y+2=18x2+1,即18x2=3y+1,x2=y+=(y+),∴p=,焦点坐标为(0,-).答案:x2=(y+)(0,-)4.把函数y=2x2-4x+5的图象按向量a平移后,得到y=2x2的图象,且a⊥b,c=(1,-1),b·c=4,则b=____________.解析:a=(0,0)-(1,3)=(-1,-3).设b=(x,y),由题意得则b=(3,-1).答案:(3,-1)5.已知向量=(3,1),=(-1,2),⊥,∥.试求满足+=的的坐标.解:设=(x,y),则=(x,y)+(3,1)=(x+3,y+1),=-=(x+3,y+1)-(-1,2)=(x+4,y-1),
则所以=(11,6).6.已知A(2,3),B(-1,5),且满足=,=3,=-,求C、D、E的坐标.解:用向量相等或定比分点坐标公式均可,读者可自行求解.C(1,),D(-7,9),E(,).培养能力7.(2004年福建,17)设函数f(x)=a·b,其中a=(2cosx,1),b=(cosx,sin2x),x∈R.(1)若f(x)=1-,且x∈[-,],求x;(2)若y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.解:(1)依题设f(x)=2cos2x+sin2x=1+2sin(2x+),由1+2sin(2x+)=1-,得sin(2x+)=-.∵|x|≤,∴-≤2x+≤.∴2x+=-,即x=-.(2)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即y=f(x)的图象.由(1)得f(x)=2sin2(x+)+1.又|m|<,∴m=-,n=1.8.有点难度哟!(2004年广州综合测试)已知曲线x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲线C.(1)求曲线C的方程;(2)过点D(0,2)的直线与曲线C相交于不同的两点M、N,且M在D、N之间,设=λ,求实数λ的取值范围.解:(1)原曲线即为(x+2)2+2(y+1)2=2,则平移后的曲线C为x2+2y2=2,
即+y2=1.(2)设M(x1,y1),N(x2,y2),则由于点M、N在椭圆x2+2y2=2上,则即消去x22得,2λ2+8λy2+8=2λ2+4λ+2,即y2=.∵-1≤y2≤1,∴-1≤≤1.又∵λ>0,故解得λ≥.故λ的取值范围为[,+∞).思考讨论本题若设出直线l的方程y=kx+2,然后与x2+2y2=2联立,利用韦达定理能求解吗?(不要忘记讨论斜率不存在的情况)读者可尝试一下.探究创新9.甲船由A岛出发向北偏东45°的方向做匀速直线航行,速度为15nmile/h,在甲船从A岛出发的同时,乙船从A岛正南40nmile处的B岛出发,朝北偏东θ(θ=arctan)的方向作匀速直线航行,速度为10nmile/h.(如下图所示)(1)求出发后3h两船相距多少海里?(2)求两船出发后多长时间相距最近?最近距离为多少海里?解:以A为原点,BA所在直线为y轴建立如下图所示的坐标系.设在t时刻甲、乙两船分别在P(x1,y1),Q(x2,y2),
则由θ=arctan,可得cosθ=,sinθ=,x2=10tsinθ=10t,y2=10tcosθ-40=20t-40.(1)令t=3,P、Q两点的坐标分别为(45,45),(30,20).|PQ|===5,即两船出发后3h时,两船相距5nmile.(2)由(1)的解法过程易知|PQ|====≥20.∴当且仅当t=4时,|PQ|的最小值为20,即两船出发4h时,相距20nmile为两船最近距离.●思悟小结1.理解线段的定比分点公式时应注意以下问题:(1)弄清起点、分点、终点,并由此决定定比λ;(2)在计算点分有向线段所成比时,首先要确定是内分点,还是外分点,然后相应地把数量之比转化为长度之比.也可直接由定义=λ获解.2.线段的定比分点的坐标表示,强化了坐标运算的应用,确定λ的值是公式应用的关键.3.关于平面图形的平移,主要确定的是平移向量.注意公式正、逆使用,并特别注意分清新旧函数解析式.4.配凑法、待定系数法、对应点代入法是确定平移向量的重要方法.1.线段的定比分点公式=λ,该式中已知P1、P2及λ可求分点P的坐标,并且还要注意公式的变式在P1、P2、P、λ中知三可求第四个量.2.定比分点坐标公式要用活不要死记.可设出坐标利用向量相等列方程组.该解法充分体现了向量(形)与数之间的转化具有一般性.3.平移前后坐标之间的关系极易出错,要引导学生弄清知识的形成过程不要死记硬背.
拓展题例【例1】(2004年豫南三市联考)已知f(A,B)=sin22A+cos22B-sin2A-cos2B+2.(1)设△ABC的三内角为A、B、C,求f(A,B)取得最小值时,C的值;(2)当A+B=且A、B∈R时,y=f(A,B)的图象按向量p平移后得到函数y=2cos2A的图象,求满足上述条件的一个向量p.解:(1)f(A,B)=(sin2A-)2+(cos2B-)2+1,由题意得∴C=或C=.(2)∵A+B=,∴2B=π-2A,cos2B=-cos2A.∴f(A,B)=cos2A-sin2A+3=2cos(2A+)+3=2cos2(A+)+3.从而p=(,-3)(只要写出一个符合条件的向量p即可).