两点间的距离
已知平面上两点P1(x1,y1),P2(x2,y2),如何求P1P2的距离|P1P2|呢?两点间的距离Q(x2,y1)yxoP1P2(x1,y1)(x2,y2)
两点间的距离yxoP1P2yxoP2P1
练习1、求下列两点间的距离:(1)、A(6,0),B(-2,0)(2)、C(0,-4),D(0,-1)(3)、P(6,0),Q(0,-2)(4)、M(2,1),N(5,-1)(5)、A(2,4),B(2,-7)(6)、C(-2,-8),D(-2,7)(7)、O(0,0),P(3,4)2.已知点A(a,-5)与B(0,10)间的距离是17,求a的值.
例题分析解:设所求点为P(x,0),于是有解得x=1,所以所求点P(1,0)
2、求在x轴上与点A(5,12)的距离为13的坐标;练习3、已知点P的横坐标是7,点P与点N(-1,5)间的距离等于10,求点P的纵坐标。
例题分析例4、证明平行四边形四条边的平方和等于两条对角线的平方和。yxo(b,c)(a+b,c)(a,0)(0,0)解:如图,以顶点A为坐标原点,AB所在直线为x轴,建立直角坐标系,则有A(0,0)设B(a,0),D(b,c),由平行四边形的性质可得C(a+b,c)因此,平行四边形四条边的平方和等于两条对角线的平方和ABDC
用坐标法证明简单的平面几何问题的步骤:第一步:建立坐标系,用坐标表示有关的量;第二步:进行有关的代数运算;第三步:把代数运算结果“翻译”所几何关系.
练习4、证明直角三角形斜边的中点到三个顶点的距离相等。yxoBCAM(0,0)(a,0)(0,b)
平面内两点P1(x1,y1),P2(x2,y2)的距离公式是小结