高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 听课记录
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 听课记录

ID:1232424

大小:109.5 KB

页数:5页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
听课记录年月日授课教师王孔华学科数学学校班级大路中学高一(七)课题点到直线的距离课型新课1.教师提出问题,引发认知冲突问题:假定在直角坐标系上,已知一个定点P(x0,y0)和一条定直线l:Ax+By+C=0,那么如何求点P到直线l的距离d?请学生思考并回答。学生1:先过点P作直线l的垂线,垂足为Q,则|PQ|就是点P到直线l的距离d;然后用点斜式写出垂线方程,并与原直线方程联立方程组,此方程组的解就是点Q的坐标;最后利用两点间距离公式求出|PQ|。接着,教师用投影出示下列5道题(尝试性题组),请5位学生上黑板练习(第(4)题请一位运算能力强的同学,其余学生在下面自己练习,每做完一题立即讲评):(1)求P(1,2)到直线l:x=3的距离d;(答案:d=2)(2)求P(x0,y0)到直线l:By+C=0(B≠0)的距离d;(答案:)(3)求P(x0,y0)到直线l:Ax+C=0(A≠0)的距离d;(答案:)(4)求P(6,7)到直线l:3x-4y+5=0的距离d;(答案:d=1)(5)求P(x0,y0)到直线l:Ax+By+C=0(AB≠0)的距离d。第(1)容易、(2)和(3)题虽然含有字母参数,但由于直线的位置比较特殊,学生不难得出正确结论;第(4)题虽然运算量较大,但按照刚才学生1回答的方法与步骤,也能顺利解出正确答案;第(5)题虽然思路清晰,但由于字母参数过多、运算量太大行不通。学生们陷入了困境。2.教师引导教师:根据以上5位学生的运算结果,你能得到什么启示?学生2:当直线的位置比较特殊(水平或竖直)时,点到直线的距离容易求得,而当直线是倾斜位置时则较难;含有多个字母时虽然想起来思路很自然,但具体操作起来因计算量很大而无法得出结果。P(x0,y0)Q图1教师:那么,练习(5)有没有运算量小一点的推导方法呢?我们能不能根据刚才的第(2)、(3)的启示,借助水平、竖直情形和平面几何知识来解决倾斜即一般情况呢?请同学们思考。学生3:能!如图1,过点P作x、y轴的垂线分别交直线l于S、R,则由三角形面积公式可得|PQ|=(|PR|·|PS|)/|RS|教师:|PR|怎么求?|PS|又怎么求?学生3:设R(x1,y0),则由Ax1+By0+C=0,得x1=—(By0+C)/A,∴|PR|=|x0-x1|=|Ax0+By0+C|/|A|;同理:|PS|=|Ax0+By0+C|/|B|。教学点评:1.整堂课充分体现了以学生为主体,教师为引导者的新的教学理念。2.例题、习题的搭配合理,能联系学生的生活,尊重学生原有的基础知识。 教师:|RS|怎么求?学生3:|RS|==(/|AB|)·|Ax0+By0+C|。教师:|PQ|结果是什么?学生3:|PQ|=。教师:公式的这种推导方法是否需要作补充说明?学生4:当A=0或B=0时,ΔPRS不存在,故应说明公式当A=0或B=0时是否适用?由(2)、(3)检验可知公式依然成立,即公式对任意直线都适用。3.教师提出问题,学生分组讨论教师:推导点到直线的距离公式的方法不少。前面我们学了函数、三角函数、向量、不等式等数学知识,你能用所学过的知识从不同角度、采用不同方法来推导这个公式吗?请同学们先独立思考,然后在小组上进行讨论交流,由组长负责记录。10分钟后每组推选一名代表对本组找到的最好的一种推导方法通过实物投影进行“成果”交流。学生们积极探讨;教师来回巡视,回答各研究小组的询问……4.学生交流“成果”,教师点评小结经过约十分钟的研讨,各小组都找到了新的推导方法。于是教师请4名代表依次上讲台(让准备成熟的先讲),借助实物投影介绍本组的“成果”。由于时间关系,每组只要求讲一种方法,用时不超过4分钟,且各组的方法不能重复。学生5:我们用的是“设而不求,整体代换”的数学思想。请看投影屏幕:设Q的坐标为(x1,y1),则直线PQ的斜率k1=,又直线l的斜率k=-,于是由PQ⊥l得,k1k=-1即B(x1-x0)-A(y1-y0)=0①又因为Ax1+By1+C=0,即Ax1+By1=-C两边同减Ax0+By0得A(x1-x0)+B(y1-y0)=-(Ax0+By0+C)② 于是①2+②2得,(A2+B2)[(x1-x0)2+(y1-y0)2]=(Ax0+By0+C)2,即(A2+B2)d2=(Ax0+By0+C)2     所以d=。教师:“设而不求,整体代换”,真是奥妙无穷,这是解析几何减少运算量的有效途径,同时也体现了数学的内在美,妙不可言。学生6:我们小组向大家介绍一种独特的方法——向量法,请看投影屏幕:T(x1,y1)P(x0,y0)Q图2如图2,设T(x1,y1)为直线l上的任意一点,则Ax1+By1+C=0,=(x1-x0,y1-y0)∵PQ⊥直线l, ∴平行于直线l的法向量=(A,B)另设与的夹角为θ,则·=cosθ即|A(x1-x0)+B(y1-y0)|=|||cosθ|即|Ax0+By0+C|=·d∴d=。教师:向量是数量与图形的有机结合,解析几何是用代数的方法解决几何问题,两者都体现了数形结合的思想,第三小组的推导方法证明了这一点,也再次说明了向量具有很强的实用性与工具性,用向量法解解析几何题确实行之有效。学生7::我们小组向大家介绍向量的另一种方法,妙用向量数量积的性质.请看投影屏幕:如图3,设垂足是点H(m,n),直线l的法向量共线,这是相当简单的方法了。教师:巧妙利用向量数量积的性质来求距离,简直是“巧夺天工”,与其他方法相比,这种方法有绝对优势,我们必须重视对向量工具性的研究和应用。学生8:刚才三个小组的证明方法确实精彩,我们也发现了一种巧妙的方法,把它称为“柯西不等式法”,请看投影屏幕:我们知道,P点到直线l的距离,实质上是点P与直线l上任意一点T的距离的最小值,于是我们设T(x1,y1)为直线l上的任一点(如图2),则Ax1+By1+C=0,而d=|PT|min,于是|PT|==×,利用柯西不等式,便有|PT|≥=, 所以d=,此时,即PT垂直于直线l。教师:这一证法果然十分巧妙,包含的数学思想十分丰富。由点到直线的距想到最小值,又由最小值想到不等式,在一步步“转化”中问题得到圆满解决。同时也体现了不等式的工具作用。5.公式应用(1)求P(6,7)到直线l:3x-4y+5=0的距离d.(直接代公式得答案:d=1,检验尝试性题组第(4)的答案)(2)求P(-1,1)到直线l:的距离d.(先化直线方程为一般式再代公式得答案:)听课随感:7、老师这节课上得很成功,学生们上课的积极性和参与率极高,特别是老师能抓住儿童的心理特点,创设一定的情境。      老师并提供了丰富的内容,在整个教学过程中给予了学生比较充分的自主探究机会,让学生在活动中学习、提升。      老师能从学生特点出发,让学生在玩活动过程中探究新知识、理解新知,人整体上来看,效果确实不错,值得学习。

10000+的老师在这里下载备课资料