高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 学案
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 学案

ID:1232444

大小:93 KB

页数:6页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
莆薄薆螀节薃虿羆膈薂袁蝿膄薁薁肄肀薀蚃袇荿蕿螅肂芅蕿袇袅膁蚈薇肁肇蚇虿袃莅蚆螂聿芁蚅羄袂芇蚄蚄膇膃芁螆羀聿芀袈膆莈艿薈羈芄芈蚀膄膀莇螃羇肆莆袅蝿莄莆蚅羅莀莅螇袈芆莄衿肃膂莃蕿袆肈莂蚁肁莇莁螃袄芃蒀袆肀腿蒀薅袃肅葿螈肈肁蒈袀羁莀蒇薀膆芆蒆蚂罿膂蒅螄膅肈薄袇羇莆薄薆螀节薃虿羆膈薂袁蝿膄薁薁肄肀薀蚃袇荿蕿螅肂芅蕿袇袅膁蚈薇肁肇蚇虿袃莅蚆螂聿芁蚅羄袂芇蚄蚄膇膃芁螆羀聿芀袈膆莈艿薈羈芄芈蚀膄膀莇螃羇肆莆袅蝿莄莆蚅羅莀莅螇袈芆莄衿肃膂莃蕿袆肈莂蚁肁莇莁螃袄芃蒀袆肀腿蒀薅袃肅葿螈肈肁蒈袀羁莀蒇薀膆芆蒆蚂罿膂蒅螄膅肈薄袇羇莆薄薆螀节薃虿羆膈薂袁蝿膄薁薁肄肀薀蚃袇荿蕿螅肂芅蕿袇袅膁蚈薇肁肇蚇虿袃莅蚆螂聿芁蚅羄袂芇蚄蚄膇膃芁螆羀聿芀袈膆莈艿薈羈芄芈蚀膄膀莇螃羇肆莆袅蝿莄莆蚅羅莀莅螇袈芆莄衿肃膂莃蕿袆肈莂蚁肁莇莁螃袄芃蒀袆肀腿蒀薅袃肅葿螈肈肁蒈袀羁莀蒇薀膆芆蒆蚂罿膂蒅螄膅肈薄袇羇莆薄薆螀节薃虿羆膈薂袁蝿膄薁薁肄肀薀蚃袇荿蕿螅肂芅蕿袇袅膁蚈薇肁肇蚇虿[文件]sxgjieja0002.doc[科目]数学[年级]高中[章节][关键词]点到直线的距离/距离公式[标题]点到直线的距离[内容]点到直线的距离教学目标1.使学生掌握点到直线的距离公式及其结构特点,并能运用这一公式.2.学习并领会寻找点到直线距离公式的思维过程以及推导方法.3.教学中体现数形结合、转化的数学思想,培养学生研究探索的能力.教学重点与难点点到直线的距离公式的研究探索过程是重点,点到直线的距离公式的推导是难点.教学过程师:什么是平面上点到直线的距离?生:(略).师:如何求平面上一点到一直线的距离?问题1:已知点P(-1,2),和直线l:2x+y-10=0,求P点到直线l的距离.生:先求出过P点与l垂直的直线l′:x-2y+5=0,再求出l与l′的交点P′(4,3),则=即为所求.师:问题2:已知点P(m,n),直线l:y=kx+b,求点P到l的距离d.生:可用问题1的方法,但运算非常复杂.师:能否换一个角度去解决这个问题.(启发学生从最基本的概念入手分析)事实上点到直线的距离就是求过点向已知直线所引垂线段的长,而通常线段的长要利用三角形来求解.如何构造一个含所求线段又易于求解的三角形是解决这个问题的关键.我们知道,平面上点到直线的距离等于过这个点与已知直线平行的平行线直线的距离.好,这样就可以将所求线段平行移动之后放在最佳的位置.生:过P点作与l平行的直线l′,l与l′的距离即为所求(如图1-29).师:(板书图形)观察图形特征.生:可利用两平行线与y轴交点间的线段构造三角形.师生共同完成下面过程:设过P点与l平行的直线为l′,方程是y=kx+b′,l与l′分别交y轴于Q点、R点,则|RQ|=|b-b′|,过点R作RM⊥l于M,则|RM|=d.于是出现了直角三角形RMQ,是个好兆头.在RtΔRMQ中(α为直线为倾斜角), ①若α<(如图1-30(1))|RM|=|RQ|·cosα ②若α>(如图1-30(2))|RM|=|RQ|·cos(π-α).由①②可知:d=|b-b′|·|cosα|因为|cosα|=,所以d=.(设法将b′用已知数表示)又因为P(m,n)在直线y=kx+b′,故有n=km+b′,b′=n-km.所以d=,即P点到直线l的距离是.(*)师:如果将问题2中的直线方程l:y=kx+b换成一般式:Ax+By+C=0,结果如何?问题3:已知点O(x0,y0),直线l:Ax+By+C=0,求点P到直线l的距离d.学生解答:因为k=-(B≠0),b=-,代入公式(*),即得.即:平面内一定点P(x0,y0)到一条定直线l:Ax+By+C=0的距离为:d=师:上述推导中,若B=0,公式成立吗?生:验证如下,P(x0,y0)到直线x=α的距离d=.用公式计算: .结果相等,说明B=0时,公式仍然成立.公式适用于平面内的任意直线.师:作为公式,要会应用并记住公式的结构特征.仔细观察:①问题中的全部已知数均在公式中出现.②公式保证了d≥0.③公式要求,说明A、B不能同时为零.另外注意:直线l的方程是一般式,公式的应用没有条件限制.师:在求点到直线的距离的过程中,我们利用了平行线间的距离概念,那么现在是否会求两行平行直线之间的距离呢?生:问题2中已经得到:l1:y=kx+b1,l2:y=kx+b2,则l1与l2的距离d=b1-b2k2+1.师:对于一般情况呢?生:如果l1:Ax+By+C1=0,l2:Ax+By+C2=0,当B≠0时,d=C1-C2A2+B2;当B=0时,易验证上式仍然成立.即平面上两条平行线Ax+By+C1=0与Ax+By+C1=0的距离是d=C1-C2A2+B2.例1点A(α,6)到直线3x-4y=2的距离等于4,求α的值.解应用点到直线的距离公式,解关于α的方程:,3α-26=20,  所以α=2或α=463.师:满足条件的点A有(2,6)和(463,6)两个,它们在已知直线的两侧,如图(1-31).由解的过程可知:当3α-26>0时,所求点在已知直线的下方,当3α-26<0时,所求点在已知直线的上方.例2求过点A(-1,2),且与原点的距离等于22的直线方程.分析因为所求直线方程过点A(-1,2).所以可以用点斜式表示成y-2=k(x+1),问题就转化成求斜率k,根据原点到直线的距离等于22,列出关于k的方程,问题就可以得到解决.由学生完成解题过程:设所求直线的斜率为k,则方程y-2=k(x+1),即kx-y+k+2=0.因为0-0+k+2k2+1=22,所以k2+8k+7=0解之k=-1或k=-7,所求直线方程为x+y-1=0或7x+y+5=0.师:可以画图直观的看出结果(图略)例3求直线2x+11y+16=0关于点P(0,1)对称的直线方程.分析(1)中心对称的两条直线是互相平行的.(2)这两条直线与对称中心的距离相等. 解设所求直线方程为2x+11y+C=0.由点到直线的距离公式可得:0+11+1622+112=0+11+C22+112,C=16(已知直线)或C=-38.所以,所求直线为2x+11y-38=0.师:利用图形的几何性质,结合代数运算,简而明地解决了问题.小结:(学生回答)这节课我们讨论了平面内点到直线的距离公式和两条平行直线之间的距离公式.师:点到直线的距离转化成两条平行直线之间的距离来求,最终两条平行直线之间的距离又利用了点到直线的距离公式,可见二者有着密切的联系.通过公式的推导,请同学们认真体会利用图形特点解题的好处.作业:1.课本:第42页1,2,3题,第44页12,13,15题.2.补充:(1)已知平行线2x+3y-3=0与2x+3y-9=0,求与它们等距离的平行线的方程.(2)求平行于直线x-y-2=0,并且与它的距离为22的直线方程.(3)过原点和点A(1,3)作两条平行直线,使它们的距离等于5,求这两条平行线的方程.设计说明点到直线的距离公式是解决理论和实际问题的一个重要工具,教学中理应予以重视.但在以往的教学过程中遇到的最大困难是:思路自然的则运算很繁,而运算较简单的解法则思路又很不自然.这样就造成了教学中通常采用“满堂灌”、“注入式”,学生的思维得不到应有的训练,学生的主体作用也不能充分体现出来.为避免这个问题,有必要很好地探讨一下,“点到直线的距离公式”的教学如何更合理,怎样把教学过程变成师生共同探索、发现公式的过程,怎样使推导过程自然而简练.本节课是“两条直线的位置关系”的最后一个内容,在复习引入时,有意识地涉及两直线垂直、两直线的交点等知识,既帮助学生整理、复习已学知识的结构,也让学生在复习过程中自己“发现”尚未解决的问题,使新授知识在原认知结构中找到生长点,自然地引出新问题,符合学生的认知规律,有利于学生形成合理、完善的认知结构.教学过程中,逐步逼近目标,在这过程中展示了数学知识产生的思维过程.学生能够自觉地、主动地参与进来,教师的主导作用,学生的主体作用都得以充分体现,经常这样做,学生的数学思维能力必奖逐步得到提高.在教学中还可以采用其他的方法推导“点到直线的距离”公式.只要抓住“构造一个可用的三角形”这个关键,就能突破难点,易于学生的理解和掌握.比如问题2中:(1)|QM|d=tanα|QM|d=tan(π-α)|QM|=d|k||RQ|=|b-b′|d2+(d|k|)2=|b-b′|2,所以d=|b-b′|k2+1.在公式的推导过程中,必须充分利用图形的特征,根据平面几何的有关知识,使问题得到解决.分析点P到直线l的距离是P点到直线l的垂直线段的长,即该点与垂足Q间的距离.由图1-32可联想:利用平面几何中的射影定理,使PQ成为一直角三角形斜边上的高.通过解直角三角形使问题得到解决. 具体方法如下:直线l:Ax+By+C=0,点P(x0,y0).设A≠0,B≠0,这时l和x轴、y轴都相交,如图(1-33), 过点P(x0,y0)作直线l的垂线交l于Q,令|PQ|=d,过P作x轴的平行线交l于R(x1,y0),作y轴的平行线交l于S(x0,y2),有:Ax1+By0+C=0,Ax0+By2+C=0.得出:x1=-By0-CA,y2=-Ax0-CB.所以|PR|=|x0-x1|=|Ax0+By0+CA|,|PS|=|y0-y2|=|Ax0+By0+CB|,|RS|=|PR|2+|PS|2=A2+B2|AB|·|Ax0+By0+C|.因为d·|RS|=|PR|·|RS|,所以d=|Ax0+By0+C|A2+B2,易证A=0或B=0时也成立.平面解析几何的研究方法就是用代数方法来研究几何问题,上面的推导方法突出了这种思想方法,巧妙地运用了平面几何的知识,构造了三角形,使繁杂的计算简化了.例1虽然是一个简单的公式应用,自然解出两个结果,为什么会有两个满足条件的点A,由图很直观地得到解释,从公式结构看是由于绝对值符号产生的两个不同解.那么当点P在直线l的某一侧时,就可去掉绝对值符号:当Ax0+By0+C≥0时,d=Ax0+By0+C-A2+B2,当Ax0+By0+C<0时,d=Ax0+By0+C-A2+B2.而Ax+By+C>0,Ax+By+C<0,分别表示整个平面被直线Ax+By+C=0分成的两个半面平,我们只需要判定点P在哪个半平面上就可以脱去绝对值符号.由此还可加深对图形的理解和认识.例如下面的问题:(1)求到已知直线3x+2y-6=0距离等于13的点的轨迹.(2)求与平行线3x+2y-6=0和6x+4y-3=0等距离的点的轨迹.第(1)题中的“点”不能确定在已知直线的哪一侧,因此在已知直线的两侧都有满足条件的点,故得出轨迹是:与已知直线平行且距离是213的两条平行直线:3x+2y+7=0和3x+2y-19=0.第(2)题中的“点”必在直线3x+2y-6=0和直线6x+4y-3=0之间,也就是说满足条件的点只能在已知直线的同一侧.因此轨迹是与两条平行线等距离的一条平行线.可先求出两条直线在y轴上的截距的平均值b.因为b1=3,b2=34,所以b=b1+b2=3+342=158.再由斜截式可得出所求直线的方程是: y=-32x+158,即12x+8y-15=0.第(2)题还可以直接用公式:设动点P(x,y)到两条平行线的距离相等,根据点到直线的距离公式,得到3x+2y-63222=6x+4y-362+42.化简:2|3x+2y-6|=|6x+4y-3|.由于动点在直线3x+2y-6=0的下方,同时在直线6x+4y-3=0的上方.故可得到:2(3x+2y-6)=(6x+4y-3),所以轨迹方程为12x+8y-15=0.通过对本节课教学的探讨,力求打破照本宣科、满堂灌、注入式的旧模式,希望达到较好的效果,使学生的思维得到有效训练,并能充分发挥教师的主导作用和学生的主体作用.(北京市新源里中学吴苓)芆螈聿膄蒂螄肈莇芄蚀肇肆薀薆蚃腿莃蒂蚃芁薈螁蚂羁莁蚇螁肃薆薂螀膅荿蒈蝿芈膂袇螈肇蒈螃螇腿芀虿螇节蒆薅螆羁艿蒁螅肄蒄螀袄膆芇蚆袃芈蒂薂袂羈芅薈袁膀薁蒄袁芃莄螂袀羂蕿蚈衿肅莂薄袈膇薇蒀羇艿莀蝿羆罿膃蚅羅肁莈蚁羅芄膁薇羄羃蒇蒃羃肅芀螁羂膈蒅蚇羁芀芈薃肀羀蒃葿聿肂芆螈聿膄蒂螄肈莇芄蚀肇肆薀薆蚃腿莃蒂蚃芁薈螁蚂羁莁蚇螁肃薆薂螀膅荿蒈蝿芈膂袇螈肇蒈螃螇腿芀虿螇节蒆薅螆羁艿蒁螅肄蒄螀袄膆芇蚆袃芈蒂薂袂羈芅薈袁膀薁蒄袁芃莄螂袀羂蕿蚈衿肅莂薄袈膇薇蒀羇艿莀蝿羆罿膃蚅羅肁莈蚁羅芄膁薇羄羃蒇蒃羃肅芀螁羂膈蒅蚇羁芀芈薃肀羀蒃葿聿肂芆螈聿膄蒂螄肈莇芄蚀肇肆薀薆蚃腿莃蒂蚃芁薈螁蚂羁莁蚇螁肃薆薂螀膅荿蒈蝿芈膂袇螈肇蒈螃螇腿芀虿螇节蒆薅螆羁艿蒁螅肄蒄螀袄膆芇蚆袃芈蒂薂袂羈芅薈袁膀薁蒄袁芃莄螂袀羂蕿蚈衿肅莂薄袈膇薇蒀羇艿莀蝿羆罿膃蚅羅肁莈蚁羅芄膁薇羄羃蒇蒃羃肅芀螁羂膈蒅蚇羁芀芈薃肀羀蒃葿聿肂芆螈聿膄蒂螄肈莇芄蚀肇肆薀薆蚃腿莃蒂蚃芁薈螁蚂羁莁蚇螁肃薆薂螀膅荿蒈蝿

10000+的老师在这里下载备课资料