高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 学案
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 学案

ID:1232455

大小:98.5 KB

页数:3页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
点到直线的距离点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式.例1求两平行线l1:2x+3y–8=0l2:2x+3y–10=0的距离.解法一:在直线l1上取一点P(4,0),因为l1∥l2,所以P到l2的距离等于l1与l2的距离,于是解法二:直接由公式2.两平行线间的距离d已知l1:Ax+By+C1=0l2:Ax+By+C2=0证明:设P0(x0,y0)是直线Ax+By+C2=0上任一点,则点P0到直线Ax+By+C1=0的距离为.又Ax0+By0+C2=0即Ax0+By0=–C2,∴经典习题例1求过点M(–2,1)且与A(–1,2),B(3,0)两点距离相等的直线的方程.解法一:当直线斜率不存在时,直线为x=–2,它到A、B两点距离不相等.所以可设直线方程为:y–1=k(x+2)即kx–y+2k+1=0.由,解得k=0或.故所求的直线方程为y–1=0或x+2y=0.解法二:由平面几何知识:l∥AB或l过AB的中点. 若l∥AB且,则l的方程为x+2y=0.若l过AB的中点N(1,1)则直线的方程为y=1.所以所求直线方程为y–1=0或x+2y=0.例2(1)求直线2x+11y+16=0关于点P(0,1)对称的直线方程.(2)两平行直线3x+4y–1=0与6x+8y+3=0关于直线l对称,求l的方程.【解析】(1)当所求直线与直线2x+11y+16=0平行时,可设直线方程为2x+11y+C=0由P点到两直线的距离相等,即,所以C=–38.所求直线的方程为2x+11y–38=0.(2)依题可知直线l的方程为:6x+8y+C=0.则它到直线6x+8y–2=0的距离,到直线6x+8y+3=0的距离为所以d1=d2即,所以.即l的方程为:.例3等腰直角三角形ABC的直角顶点C和顶点B都在直线2x+3y–6=0上,顶点A的坐标是(1,–2).求边AB、AC所在直线方程.【解析】已知BC的斜率为,因为BC⊥AC所以直线AC的斜率为,从而方程即3x–2y–7=0又点A(1,–2)到直线BC:2x+3y–6=0的距离为,且.由于点B在直线2x+3y–6=0上,可设,且点B到直线AC的距离为所以或,所以或所以或 所以直线AB的方程为或即x–5y–11=0或5x+y–3=0所以AC的直线方程为:3x–2y–7=0AB的直线方程为:x–5y–11=0或5x+y–3=0.

10000+的老师在这里下载备课资料