高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 教案2
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 教案2

ID:1232474

大小:27.5 KB

页数:7页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
点到直线的距离教案2教学目标:1让学生理解点到直线距离公式的推导和掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离2培养学生观察、思考、分析、归纳等数学能力,数形结合、化归(或转化)、特殊到一般的数学思想方法以及数学应用意识3让学生了解和感受探索问题的方法,以及用联系的观点看问题在探索问题的过程中体验成功的喜悦教学重点:点到直线距离公式及其应用教学难点:点到直线距离公式的推导教学方法:启发式讲解法、讨论法教学工具:电脑多媒体教学过程:一、提出问题多媒体显示实际的例子:某电信局计划年底解决本地区最后一个小区的电话通信问题经过测量,若按照部门内部设计好的坐标图(即以电信局为原点),得知这个小区的坐标为P(-1,),离它最近的只有一条线路通过,其方程为2x10=0要完成这项任务,至少需要多长的电缆线? 这个实际问题要解决,要转化成什么样的数学问题?学生得出就是求点到直线的距离教师提出这堂我们就学习点到直线的距离,并板书写题:点到直线的距离二、解决问题多媒体显示:已知点P(x0,0),直线:AxB=0,求点P到直线的距离怎样求点到直线距离呢?学生应该很快能回答出,做垂线找垂足Q,求线段PQ的长度怎样用点的坐标和直线方程求和表示点到直线距离呢?教师提示在解决问题时先可以考虑特殊情况,再考虑一般情况学生提出平行于x轴和轴的特殊情况显示图形:板书:如何求?学生思考回答下列想法:思路一:过作于点,根据点斜式写出直线方程,由与联立方程组解得点坐标,然后利用两点距离公式求得教师评价:此方法思路自然,但是运算繁琐并多媒体展示求解过程解:直线:,即由,说明:本过程只展示,不在堂推导教师提问:能否用其它方法,不求点Q的坐标,求线段PQ的长度?学生思考:放在三角形---特殊三角形---直角三角形中 教师提问:如何构造三角形?第三个顶点选在什么位置?学生思考:可能在直线与x轴的交点或与轴交点N,或过P点做x,轴的平行线与直线的交点R、S教师根据学生提出的点的位置作分析,求解过程的繁与简,最后决定方法下列是学生可能提到的情况:思路二:在直角△PQ,或直角△PQN中,求边长与角(角与直线到直线角有关),用余弦值思路三:在直角△PQR,或直角△PQS中,求边长与角(角与直线倾斜角有关,但分情况),用余弦值思路四:在直角△PRS中,求线段PR、PS、RS,利用等面积法(不涉及角和分情况),求得线段PQ长学生练习求解思路四教师巡视,根据学生情况演示过程解:设,,,,;,由,而说明:如果学生没有想到思路二、三,教师提示做后思考作业题目教师提问:①上式是由条下得出,对成立吗?②点P在直线上成立吗?③公式结构特点是什么?用公式时直线方程是什么形式?由此推导出点P(x0,0)到直线:AxB=0距离公式: 教师继续引导学生思考,不构造三角形可以求吗?(在前面学习的向量知识中,有向量的模由于在证明两直线垂直时已经用到向量知识,且也提出过直线的法向量的概念)能否用向量知识求解呢?思路五:已知直线的法向量,则,,如何选取法向量?直线的方向向量,则法向量为,或,或其它由师生一起分析得出取=教师板演:,,由于点Q在直线上,所以满足直线方程,解得教师评析:向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点而且上述方法在今后解析几何与向量结合的题目中,用坐标联系转化是常用方法三、公式应用练习:1解决堂提出的实际问题(学生口答)2求点P0(-1,2)到下列直线的距离:①3x=2②=3③2x=10④=-4x1练习选择:平行坐标轴的特殊直线,直线方程的非一般形式练习目的:熟悉公式结构,记忆并简单应用公式教师强调:直线方程的一般形式例题:3求平行线2x-78=0和2x-7-6=0的距离教师提问:如何求两平行线间的距离?距离如何转化?学生回答:选其中一条直线上的点到另一条直线的距离 师生共同分析:点所在直线的任意性、点的任意性学生自己练习,教师巡视教师提问几个学生回答自己选取的点和直线以及结果然后选择一种取任意点的方法进行板书解:在直线2x-7-6=0上任取点P(x0,0),则2x0-70-6=0,点P(x0,0)到直线2x-78=0的距离是教师评述:本例题选取本例题,但解法较多除了选择直线上的点,还可以选取原点,求它到两条直线的距离,然后作和或者选取直线外的点P,求它到两条直线的距离,然后作差引申思考:与两平行线间距离公式四、堂小结:(由学生总结)①&n②数学思想方法:类比、转化、数形结合思想,特殊到一般的方法③多角度考虑问题,一题多解五、布置作业①本习题73的第13题----16题;②总结写出点到直线距离公式的多种方法教学设计说明:一、教材分析 我主要从三方面:教材的地位和作用、教学目标分析、教学重点和难点说明的。教学目标包括:知识、能力、德育等方面的内容。我确定教学目标的依据有教学大纲、考试大纲的要求、新教材的特点、所教学生的实际情况。二、教学方法和手段1、教学方法的选择(1)指导思想:教师为主导,学生为主体,引导学生参与对事物的认识过程。(2)教学方法:启发式讲解法、讨论法。2教学手段的选用采用了电脑多媒体教具,不仅将数学问题形象、直观显示,便于学生思考,而且迅速展示部分纯计算的解题过程,提高堂效率。三、教学过程这节我分:”提出问题--解决问题--公式应用--堂小结--布置作业”五个环节完成。首先多媒体显示实例,引发学生的学习的兴趣和求知欲望,从而引出数学问题。通过一系列问题引导学生通过图形观察,进而分析、归纳总结选择较好的方法具体实施。关于思路五,在本中没有出现这样的证法,我在堂上选取这样的证法。主要是考虑到:向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点。而且上述方法在今后解析几何与向量结合的题目中,用坐标联系转化是常用方法,这样思路五的给出不仅符合新教材的要求,也为今后的学习方法奠定了基础。 我选择练习目的:熟悉公式结构,记忆并简单应用公式,主要通过学生口答完成。我强调注意在公式中直线方程的一般式。例题的选取自本,但是本只有一种特殊点的解法。我把本例题进行挖掘,引导学生多角度考虑问题。在整个过程中让学生注意体会解题方法中的灵活性。本节小结主要由学生总结,教师补充,尤其数学思想方法教师加以解释。在整节的处理中,采取了知识、方法于本,挖掘其深度、广度,符合现代教学要求

10000+的老师在这里下载备课资料