高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 课件
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 课件

ID:1232522

大小:423.5 KB

页数:16页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
点到直线的距离公式人教版高中数学必修2-2 点到直线的距离 点到直线的距离xyOlP(x0,y0)Q点到直线的距离的定义点到直线的距离公式的推导过程过点作直线的垂线,垂足为点,线段的长度叫做点到直线的距离. 已知点P(x0,y0)和直线lAx+By+C=0,(假设A、B≠0)求点P到直线l的距离.xyOlP(x0,y0)Q创设情境返回 反思:这种解法的优缺点是什么?xyOlP(x0,y0)Q思考:最容易想到的方法是什么?思路①.依据定义求距离,其流程为:求l的垂线l1的方程解方程组,得交点Q的坐标求PQ尝试 合作 交流 思路②利用直角三角形的面积公式的算法····还有其它方法吗? 过程设计:过点作轴、轴的垂线交于点求出利用勾股定理求出根据面积相等知得到点到的距离用表示点的坐标方法②利用直角三角形面积公式的算法框图 思路②:P(x0,y0),l:Ax+By+C=0,设AB≠0,OyxldQPRS OyxldQPRS由三角形面积公式可得: 反思2:反思1:在使用该公式前,须将直线方程化为一般式.辨析反思返回前面我们是在A,B均不为零的假设下推导出公式的,若A,B中有一个为零,公式是否仍然成立? 点到直线距离公式点到直线()的距离为注:A=0或B=0,此公式也成立,但当A=0或B=0时一般不用此公式计算距离. 例1:求点P(-1,2)到直线①2x+y-10=0;②3x=2的距离。解:①根据点到直线的距离公式,得②如图,直线3x=2平行于y轴,Oyxl:3x=2P(-1,2)用公式验证,结果怎样? 例2:求平行线2x-7y+8=0与2x-7y-6=0的距离。Oyxl2:2x-7y-6=0l1:2x-7y+8=0P(3,0)两平行线间的距离处处相等在l2上任取一点,例如P(3,0)P到l1的距离等于l1与l2的距离❋直线到直线的距离转化为点到直线的距离 任意两条平行直线都可以写成如下形式:l1:Ax+By+C1=0l2:Ax+By+C2=0Oyxl2l1PQ思考:任意两条平行线的距离是多少呢?注:用两平行线间距离公式须将方程中x、y的系数化为对应相同的形式。(两平行线间的距离公式) 点到直线的距离1.此公式的作用是求点到直线的距离;2.此公式是在A、B≠0的前提下推导的;3.如果A=0或B=0,此公式恰好也成立;4.如果A=0或B=0,一般不用此公式;5.用此公式时直线要先化成一般式。小结 尝试回忆1.点到直线的距离:2.两平行线间的距离公式:要记牢哦!很重要的!

10000+的老师在这里下载备课资料