高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 教案
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 教案

ID:1232574

大小:104 KB

页数:2页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
课题:2.3.3.3点到直线的距离公式课型:新授课教学目标:知识与技能:理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;能力和方法:会用点到直线距离公式求解两平行线距离情感和价值:认识事物之间在一定条件下的转化。用联系的观点看问题教学重点:点到直线的距离公式教学难点:点到直线距离公式的理解与应用.教学过程:教学过程一、情境设置,导入新课:前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的交点问题,两点间的距离公式。逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P到直线的距离。用POWERPOINT打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学。二、讲解新课:1.点到直线距离公式:点到直线的距离为:(1)提出问题在平面直角坐标系中,如果已知某点P的坐标为,怎样用点的坐标和直线的方程直接求点P到直线的距离呢?学生可自由讨论。(2)数行结合,分析问题,提出解决方案学生已有了点到直线的距离的概念,即由点P到直线的距离d是点P到直线的垂线段的长.这里体现了“画归”思想方法,把一个新问题转化为一个曾经解决过的问题,一个自己熟悉的问题。画出图形,分析任务,理清思路,解决问题。方案一:设点P到直线的垂线段为PQ,垂足为Q,由PQ⊥可知,直线PQ的斜率为(A≠0),根据点斜式写出直线PQ的方程,并由与PQ的方程求出点Q的坐标;由此根据两点距离公式求出|PQ|,得到点P到直线的距离为d此方法虽思路自然,但运算较繁.下面我们探讨别一种方法方案二:设A≠0,B≠0,这时与轴、轴都相交,过点P作轴的平行线,交于点;作轴的平行线,交于点,由得.所以,|PR|=||=|PS|=||=2/2 |RS|=×||由三角形面积公式可知:·|RS|=|PR|·|PS|所以可证明,当A=0时仍适用这个过程比较繁琐,但同时也使学生在知识,能力,意志品质等方面得到了提高。3.例题应用,解决问题。例1.求点P=(-1,2)到直线3x=2的距离。解:d=例2.已知点A(1,3),B(3,1),C(-1,0),求三角形ABC的面积。解:设AB边上的高为h,则S=,,AB边上的高h就是点C到AB的距离。AB边所在直线方程为,即x+y-4=0。点C到X+Y-4=0的距离为h,h=,因此,S=通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性。同步练习:108页第1,2题。4.课堂练习:1.已知一直线被两平行线3x+4y-7=0与3x+4y+8=0所截线段长为3。且该直线过点(2,3),求该直线方程。2.求点P(2,-1)到直线2+3-3=0的距离.3.已知点A(,6)到直线3-4=2的距离d=4,求的值:归纳小结:点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式作业布置:110页6、7、8、9课后记:2/2

10000+的老师在这里下载备课资料