教案适用于人教版高中一年级,第二册,第三章,第三节,第一课时直接用PPT打开河南省濮阳县第三中学梁俊峰邮编457000
点到直线的距离公式濮阳县第三中学梁俊峰人教版高中数学必修2-2
点到直线的距离
点到直线的距离xyOlP(x0,y0)Q点到直线的距离的定义点到直线的距离公式的推导过程过点作直线的垂线,垂足为点,线段的长度叫做点到直线的距离.
已知点P(x0,y0)和直线lAx+By+C=0,(假设A、B≠0)求点P到直线l的距离.xyOlP(x0,y0)Q创设情境返回
反思:这种解法的优缺点是什么?xyOlP(x0,y0)Q思考:最容易想到的方法是什么?思路①.依据定义求距离,其流程为:求l的垂线l1的方程解方程组,得交点Q的坐标求PQ尝试合作交流
思路②利用直角三角形的面积公式的算法····还有其它方法吗?
过程设计:过点作轴、轴的垂线交于点求出利用勾股定理求出根据面积相等知得到点到的距离用表示点的坐标方法②利用直角三角形面积公式的算法框图
思路②:P(x0,y0),l:Ax+By+C=0,设AB≠0,OyxldQPRS
OyxldQPRS由三角形面积公式可得:
反思2:反思1:在使用该公式前,须将直线方程化为一般式.辨析反思返回前面我们是在A,B均不为零的假设下推导出公式的,若A,B中有一个为零,公式是否仍然成立?
点到直线距离公式点到直线()的距离为注:A=0或B=0,此公式也成立,但当A=0或B=0时一般不用此公式计算距离.
例1:求点P(-1,2)到直线①2x+y-10=0;②3x=2的距离。解:①根据点到直线的距离公式,得②如图,直线3x=2平行于y轴,Oyxl:3x=2P(-1,2)用公式验证,结果怎样?
例2:求平行线2x-7y+8=0与2x-7y-6=0的距离。Oyxl2:2x-7y-6=0l1:2x-7y+8=0P(3,0)两平行线间的距离处处相等在l2上任取一点,例如P(3,0)P到l1的距离等于l1与l2的距离❋直线到直线的距离转化为点到直线的距离
任意两条平行直线都可以写成如下形式:l1:Ax+By+C1=0l2:Ax+By+C2=0Oyxl2l1PQ思考:任意两条平行线的距离是多少呢?注:用两平行线间距离公式须将方程中x、y的系数化为对应相同的形式。(两平行线间的距离公式)
点到直线的距离1.此公式的作用是求点到直线的距离;2.此公式是在A、B≠0的前提下推导的;3.如果A=0或B=0,此公式恰好也成立;4.如果A=0或B=0,一般不用此公式;5.用此公式时直线要先化成一般式。小结
反馈练习:()()DB
()()DA
P在x轴上,P到直线l1:x-y+7=0与直线l2:12x-5y+40=0的距离相等,求P点坐标。解:设P(x,0),根据P到l1、l2距离相等,列式为解得:所以P点坐标为:⑴5.完成下列解题过程:=
用解析法证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高。⑵证明:建立如图直角坐标系,设P(x,0),x∈()OA(a,0)C(-a,0)B(0,b)xyEFP可求得lAB:()lCB:()|PE|=()|PF|=()A到BC的距离h=()因为|PE|+|PF|=h,所以原命题得证。
尝试回忆1.点到直线的距离:2.两平行线间的距离公式:要记牢哦!很重要的!
衷心感谢各位专家指导!再见!濮阳县第三中学梁俊峰