高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 课件
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 课件

ID:1232868

大小:568.5 KB

页数:25页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.3.3点到直线的距离3.3.4两条平行直线间的距离 回顾:求直线3x+2y-1=0和2x-3y-5=0的交点M的坐标,并证明方程3x+2y-1+λ(2x-3y-5)=0(λ为任意常数)表示过M点的所有直线(不包括直线2x-3y-5=0)。证明:联立方程3x+2y-1=02x-3y-5=0oxy(1,-1)M解得:x=1y=-1代入:3x+2y-1+λ(2x-3y-5)=0得0+λ·0=0∴M点在直线上A1x+B1y+C1+λ(A2x+B2y+C2)=0是过直A1x+B1y+C1=0和A2x+B2y+C2=0的交点的直线系方程。M(1,-1)即 两点间的距离公式是什么?已知点,则xyO复习引入 已知点,直线,如何求点到直线的距离?点到直线的距离,是指从点到直线的垂线段的长度,其中是垂足.xyO引入新课问题 反思:这种解法的优缺点是什么?xyOlP(x0,y0)Q思考:最容易想到的方法是什么?思路①.依据定义求距离,其流程为:求l的垂线l1的方程解方程组,得交点Q的坐标求PQ尝试 合作 交流 小组讨论:··还有其它方法吗? 思路②利用直角三角形的面积公式的算法····还有其它方法吗? 思路②:P(x0,y0),l:Ax+By+C=0,设AB≠0,OyxldQPRS 反思2:反思1:在使用该公式前,须将直线方程化为一般式.辨析反思返回前面我们是在A,B均不为零的假设下推导出公式的,若A,B中有一个为零,公式是否仍然成立? 点到直线距离公式点到直线()的距离为注:A=0或B=0,此公式也成立,但当A=0或B=0时一般不用此公式计算距离. 例1:求点P(-1,2)到直线①2x+y-10=0;②3x=2的距离。解:①根据点到直线的距离公式,得②如图,直线3x=2平行于y轴,Oyxl:3x=2P(-1,2)用公式验证,结果怎样? 练习11、求点A(-2,3)到直线3x+4y+3=0的距离.2.求点B(-5,7)到直线12x+5y+3=0的距离.P(x0,y0)到直线l:Ax+By+C=0的距离:点到直线的距离: 例题分析例2:已知点A(1,3),B(3,1),C(-1,0),求的面积xyOABCh 变式训练求过点A(-1,2),且与原点的距离等于的直线方程.解:设直线方程为,即则原点到这条直线的距离为由题得:解得所以直线方程为 例3:求平行线2x-7y+8=0与2x-7y-6=0的距离。Oyxl2:2x-7y-6=0l1:2x-7y+8=0P(3,0)两平行线间的距离处处相等在l2上任取一点,例如P(3,0)P到l1的距离等于l1与l2的距离❋直线到直线的距离转化为点到直线的距离 任意两条平行直线都可以写成如下形式:l1:Ax+By+C1=0l2:Ax+By+C2=0Oyxl2l1PQ思考:任意两条平行线的距离是多少呢?注:用两平行线间距离公式须将方程中x、y的系数化为对应相同的形式。(两平行线间的距离公式) (1)点到直线距离公式:,(2)两平行直线间的距离:,回顾:注意:用该公式时应先将直线方程化为一般式;注意:运用此公式时直线方程要化成一般式,并且X、Y项的系数要对应相等. 轴对称中心对称有一条对称轴:直线有一个对称中心:点定义沿轴翻转180°绕中心旋转180°翻转后重合旋转后重合性质1、两个图形是全等形2、对称轴是对应点连线的垂直平分线3、对称线段或延长线相交,交点在对称轴上1、两个图形是全等形2、对称点连线都经过对称中心,并且被对称中心平分。 例1.已知点A(5,8),B(-4,1),试求A点关于B点的对称点C的坐标。知识运用与解题研究一、点关于点对称解题要点:中点公式的运用ACBxyOC(-13,-6)-4=5+x21=8+y2解:设C(x,y)则得x=-13y=-6∴··· 例2.已知点A的坐标为(-4,4),直线l的方程为3x+y-2=0,求点A关于直线l的对称点A’的坐标。二、点关于直线对称解题要点:k•kAA’=-1AA’中点在l上A··A′YXO-3·y-4x-(-4)=-13·-4+x2+4+y2-2=0(x,y)(2,6)解:设A′(x,y)则·(L为对称轴) 例3.求直线l1:3x-y-4=0关于点P(2,-1)对称的直线l2的方程。三、直线关于点对称解题要点:法一:l2上的任意一点的对称点在l1上;法二:L1∥L2点斜式或对称两点式法三:l1//l2且P到两直线等距。解:设A(x,y)为L2上任意一点则A关于P的对称点A′在L1上∴3(4-x)-(-2-y)-4=0即直线l2的方程为3x-y-10=0·AL2L1YXOPA′·· 例4.试求直线l1:x-y-2=0关于直线l2:3x-y+3=0对称的直线l的方程。四、直线关于直线对称L1L2Lx-y-2=03x-y+3=0P∴L:7x+y+6=0yXO解:P(,)-12-52得在上任取一点Q(2,0),求其关于的对称点Q’(x,y)L1L2··Q(2,0),·Q’(x,y)3·y-0x-2=-13·y+02+3=0则X+22求出Q’点坐标后,两点式求L方程。 例4.试求直线l1:x-y+2=0关于直线l2:x-y+1=0对称的直线l的方程。四、直线关于直线对称L2L1L解:设L方程为x-y+m=0则与距离等于与距离L1L2L2L建立等量关系,解方程求mxoy 四、直线关于直线对称解题要点:(先判断两直线位置关系)(1)若两直线相交,先求交点P,再在上取一点Q求其对称点得另一点Q’两点式求L方程L1求关于的对称直线L的方程L1L2则与距离等于与距离L1L2L2L建立等量关系,解方程求m(2)若‖,设L方程为x-y+m=0L1L2

10000+的老师在这里下载备课资料