高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 课时作业
加入VIP免费下载

高中数学人教A版必修2 第三章 直线与方程 3.3.3点到直线的距离 课时作业

ID:1233244

大小:52.38 KB

页数:5页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.3.3点到直线的距离3.3.4两条平行直线间的距离[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.点(1,2)到直线y=2x+1的距离为(  )A.  B.C.D.2解析:直线y=2x+1即2x-y+1=0,由点到直线的距离公式得d==,故选A.答案:A2.已知点(3,m)到直线x+y-4=0的距离等于1,则m等于(  )A.B.-C.-D.或-解析:由=1,解得m=或-,故选D.答案:D3.已知两点A(3,2)和B(-1,4)到直线mx+y+3=0的距离相等,则实数m的值为(  )A.-6或B.-或1C.-或D.0或解析:=,即|3m+5|=|7-m|,解得m=-6或.答案:A4.到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程是(  )A.3x-4y+4=0B.3x-4y+4=0或3x-4y-2=0C.3x-4y+16=0D.3x-4y+16=0或3x-4y-14=0 解析:在直线3x-4y+1=0上取点(1,1).设与直线3x-4y+1=0平行的直线方程为3x-4y+m=0,则=3,解得m=16或m=-14,即所求直线方程为3x-4y+16=0或3x-4y-14=0.答案:D5.过点P(0,1)且和A(3,3),B(5,-1)距离相等的直线的方程是(  )A.y=1B.2x+y-1=0C.y=1或2x+y-1=0D.2x+y-1=0或2x+y+1=0解析:∵kAB==-2,过P与AB平行的直线方程为y-1=-2(x-0),即:2x+y-1=0,又AB的中点C(4,1),∴PC的方程为y=1.答案:C二、填空题(每小题5分,共15分)6.直线5x+12y+3=0与直线10x+24y+5=0的距离是________.解析:直线10x+24y+5=0可化为5x+12y+=0,所以两平行直线间的距离d==.答案:7.已知点P为x轴上一点,且点P到直线3x-4y+6=0的距离为6,则点P的坐标为________.解析:设P(a,0),则有=6,解得a=-12或8,∴点P的坐标为(-12,0)或(8,0).答案:(-12,0)或(8,0)8.与直线7x+24y=5平行且距离等于3的直线方程为__________________.解析:由题意设所求直线方程为7x+24y+c=0,则有=3,解得c=70或c=-80.即所求直线方程为7x+24y+70=0或7x+24y-80=0.答案:7x+24y+70=0或7x+24y-80=0三、解答题(每小题10分,共20分) 9.已知直线l经过点P(-2,5),且斜率为-.(1)求直线l的方程;(2)若直线m与l平行,且点P到直线m的距离为3,求直线m的方程.解析:(1)由直线方程的点斜式,得y-5=-(x+2),整理得所求直线方程为3x+4y-14=0.(2)由直线m与直线l平行,可设直线m的方程为3x+4y+C=0,由点到直线的距离公式得=3,即=3,解得C=1或C=-29,故所求直线方程为3x+4y+1=0或3x+4y-29=0.10.已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为,求直线l1的方程.解析:∵l1∥l2,∴=≠,∴或(1)当m=4时,直线l1的方程为4x+8y+n=0,把l2的方程写成4x+8y-2=0,∴=,解得n=-22或n=18.故所求直线的方程为2x+4y-11=0或2x+4y+9=0.(2)当m=-4时,直线l1的方程为4x-8y-n=0,l2的方程为2x-4y-1=0,∴=,解得n=-18或n=22.故所求直线的方程为2x-4y+9=0或2x-4y-11=0.[能力提升](20分钟,40分)11.求直线x+2y-1=0关于直线x+2y+1=0对称的直线方程(  )A.x+2y-3=0B.x+2y+3=0C.x+2y-2=0D.x+2y+2=0解析:解法一 设对称直线方程为x+2y+c=0 ∵=∴|c-1|=2,∴c=3或-1(舍)解法二 设对称直线方程为x+2y+c=0取直线x+2y-1=0上一点A(1,0),直线x+2y+1=0上一点B(-1,0),A关于B对称点C(-3,0)代入x+2y+c=0得c=3.答案:B12.平行于直线3x+4y-2=0,且与它的距离是1的直线方程为______________________.解析:设所求直线方程为3x+4y+c=0(c≠-2),则d==1,∴c=3或c=-7,即所求直线方程为3x+4y+3=0或3x+4y-7=0.答案:3x+4y+3=0或3x+4y-7=013.已知△ABC中,A(2,-1),B(4,3),C(3,-2).(1)求BC边上的高所在直线的一般式方程;(2)求△ABC的面积.解析:(1)由斜率公式,得kBC=5,所以BC边上的高所在直线方程为y+1=-(x-2),即x+5y+3=0.(2)由两点间的距离公式,得|BC|=,BC边所在的直线方程为y+2=5(x-3),即5x-y-17=0,所以点A到直线BC的距离d==,故S△ABC=××=3.14.已知点P(2,-1).(1)求过P点且与原点距离为2的直线l的方程;(2)求过P点且与原点距离最大的直线l的方程,最大距离是多少?解析:(1)①当l的斜率k不存在时显然满足要求,∴l的方程为x=2;②当l的斜率k存在时,设l的方程为y+1=k(x-2),即kx-y-2k-1=0. 由点到直线距离公式得=2,∴k=,∴l的方程为3x-4y-10=0.故所求l的方程为x=2或3x-4y-10=0.(2)易知过P点与原点O距离最大的直线是过P点且与PO垂直的直线,由l⊥OP得klkOP=-1,所以kl=-=2.由直线方程的点斜式得y+1=2(x-2),即2x-y-5=0.即直线2x-y-5=0是过P点且与原点O距离最大的直线,最大距离为=.

10000+的老师在这里下载备课资料