北师版数学八年级下课件:第3课时 平行线间的距离及平行四边形判定与性质的综合
加入VIP免费下载

北师版数学八年级下课件:第3课时 平行线间的距离及平行四边形判定与性质的综合

ID:1233661

大小:3.08 MB

页数:24页

时间:2022-08-25

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第六章平行四边形6.2平行四边形的判定第3课时平行线间的距离及平行四边形判定与性质的综合 学习目标1.掌握平行线间的距离的概念及性质;2.运用平行四边形的性质计算和证明;(重点)3.能够综合运用平行四边形的判定定理和性质.(难点) 导入新课情境引入在笔直的铁轨上,夹在两根铁轨之间的平行枕木是否一样长?你能说明理由吗?与同伴交流. 讲授新课如图,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度.经过度量,我们发现这些垂线段的长度都相等(从图中也可以看到这一点).平行线之间的距离一合作探究猜想:平行线间距离处处相等. 讲授新课如图,直线a//b,A,B是直线a上任意两点,AC⊥b,BD⊥b,垂足分别为C,D.求证:AC=BD.证明:∵AC⊥CD,BD⊥CD,理论证明abABCD∴∠1=∠2=90°.∴AC∥BD.∴AB∥CD,∴四边形ACDB是平行四边形.∴AC=BD.12 讲授新课如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等(如图:AC=BD),这个距离称为平行线之间的距离.归纳总结(简记为:两条平行线间的距离处处相等). 讲授新课AB思考:两条平行线之间的距离与点和点之间的距离、点到线之间的距离有何区别与联系?abAB点到直线的距离只有一条,即过直线外点作直线的垂线段的长度;而平行线的距离有无数条即一直线任一点都可以得到一条两平行直线的距离. 讲授新课例1如图,直线AE//BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE的面积为.ABCDE分析:根据平行线之间的距离处处相等.解析:设高为h,则S△ABD=·BD·h=16,h=4,所以S△ACE=·AE·h=×5×4=10.10典例精析 讲授新课思考:若垂线段改为夹在两条线段间的平行线段呢?它们是否相等呢?由“两组对边分别平行的四边形是平行四边形”易知其围成的封闭图形为平行四边形,再由平行四边形性质易知夹在两条平行线间的平行线段相等. 讲授新课例2已知,如图,在平行四边形ABCD中,BN=DM,BE=DF.求证:四边形MENF是平行四边形证明:在平行四边形ABCD中,AD∥BC,∴∠MDF=∠NBE.∵DM=BN,DF=BE,∴△MDF≌△NBE(SAS).∴MF=NE,∠MFD=∠NEB.∴四边形MENF是平行四边形.∴∠MFE=∠NEF∴FM∥EN. 讲授新课ABCDEF证明:∵四边形AEFD和EBCF都是平行四边形,∴ADEF,EFBC.∴ADBC.∴四边形ABCD是平行四边形.//=//=//=问题四边形AEFD和EBCF都是平行四边形,求证四边形ABCD是平行四边形.平行四边形性质与判定的综合运用二提示:要由其中的一个或多个平行四边形,得出四边形中边角的条件,判定其他四边形也是平行四边形 讲授新课例3.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有(  )A.0个B.1个C.2个D.3个B 讲授新课【解析】由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分,只有①③④可以,故选B. 讲授新课例4如图,在ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF, 讲授新课在△ABE和△CDF中,∠ABE=∠CDF,∠AEB=∠CFD,AB=CD,∴△ABE≌△CDF(AAS).∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE. 当堂练习1.(1)在□ABCD中,∠A=150°,AB=8cm,BC=10cm,则S□ABCD=.提示:过点A作AE⊥BC于E,然后利用勾股定理求出AE的值.40cm2(2)若点P是□ABCD上AD上任意一点,那么△PBC的面积是.20cm2提示:△PBC与□ABCD是同底等高. 当堂练习2.如图,▱ABCD中.EF∥GH∥BC,MN∥AB,则图中平行四边形的个数是(  )A.13B.14C.15D.18【解析】根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,如图,则图中的四边形AEOM、AGPM、ABNM、EGPO、EBNO、GBNP、MOFD、MPHD、MNCD、OPHF、ONCF、PNCH、AEFD、AGHD、ABCD、EGHF、EBCF和GBCH都是平行四边形,共18个.故选D.D 当堂练习3.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是(  )A.AF=CEB.AE=CFC.∠BAE=∠FCDD.∠BEA=∠FCEB 当堂练习4.如图,▱ABCD中,E,F分别为BC,AD边上的点,要使四边形BEDF为平行四边形,需添加一个条件:_________________________________.【解析】∵四边形EBFD要为平行四边形.∴∠BAE=∠DCF,AB=CD在△AEB与△CFD中,AB=CD∠BAE=∠DCFAE=CF,∴△AEB≌△CFD(SAS),∴AE=FC∴DE=BF;AE=FC或∠ABE=∠CDF或BE=DF(答案不唯一) 当堂练习∴四边形EBFD为平行四边形.∴可添加的条件是AE=FC,同理还可添加∠ABE=∠CDF.故答案为:AE=FC或∠ABE=∠CDF或BE=DF(答案不唯一) 当堂练习5.如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形, 当堂练习∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,∠EAG=∠FCHAE=CF∠AEG=∠CFH,∴△AEG≌△CFH(ASA),∴AG=CH. 课堂小结平行四边形五种判定方法对边平行,对边相等,对角相等判定性质夹在两条平行线间的平行线段处处相等 谢谢!

10000+的老师在这里下载备课资料