两个平行平面的距离备课时间一、教学重点、难点、疑点及解决方法1.教学重点:掌握两平行平面间的距离的概念,会求两个平行平面间的距离.2.教学难点:两个平行平面间的距离的求法二、教与学的过程设计(一)两个平行平面间的距离例1 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.已知:α∥β,l⊥α,l∩α=A.求证:l⊥β.问题5:证明直线与平面垂直的方法有几种?方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.比较几种方法,我们可以试着用第一种方法来证明.证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.第3页共3页
因为直线b是平面β内的任意一条直线,所以l⊥β.点评:这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性质3:若α∥β,l⊥α,则l⊥β.2.两个平行平面的公垂线、公垂线段和距离师:象例2这样的,和两个平行平面α,β同时垂直的直线l,叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.如图1—113,α∥β.如果AA'、BB'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得(三)总结本节课我们学习了两个平行平面的公垂线、公垂线段和距离的定义,懂得将其转化为平面几何问题来解决.三、作业见高考调研四、课后反思第3页共3页
第3页共3页