人教版高中数学选择性必修第一册3.1.2《椭圆的简单几何性质(2)》教学设计(含答案)
加入VIP免费下载

人教版高中数学选择性必修第一册3.1.2《椭圆的简单几何性质(2)》教学设计(含答案)

ID:1235301

大小:503 KB

页数:8页

时间:2022-08-27

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
3.1.2椭圆的简单几何性质(2)本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习椭圆的简单几何性质教材的地位和作用地位:本节课是在椭圆的概念和标准方程的基础上,运用代数的方法,研究椭圆的简单几何性质及简单应用.本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。因此,内容在解析几何中占有非常重要的地位。课程目标素养A.根据几何条件求出椭圆的方程.B.进一步掌握椭圆的方程及其性质的应用;C.会判断直线与椭圆的位置关系.1.数学抽象:椭圆的几何性质2.逻辑推理:利用椭圆的方程研究椭圆的几何性3.数学运算:直线与椭圆位置关系的判断4.数学建模:利用椭圆的知识解决应用问题重点:椭圆的方程及其性质的应用难点:直线与椭圆的位置关系多媒体 教学过程教学设计意图核心素养目标一、温故知新椭圆的几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程焦点的位置焦点在x轴上焦点在y轴上范围-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长长轴长为2a,短轴长为2b焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c对称性对称轴:x轴、y轴,对称中心:坐标原点离心率二、典例解析例5.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位另一个焦点上,由椭圆一个焦点通过知识回顾,和高考真题的解析,帮助学生归纳题型,形成基本解题思路。发展学生数学抽象,直观想象的核心素养。 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点,已知,=2.8cm,=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为(>>0)在Rt中,=有椭圆的性质,=2所以)=)所以所求椭圆方程为利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.通过典例解析,归纳基本题型,帮助学生形成基本解题思路,进一步体会数形结合的思想方法。发展学生数学运算,数学抽象和数学建模的核心素养。 跟踪训练1.(1)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为(  )A.+=1  B.+=1C.+=1D.+=1B [由题意,得解得因为椭圆的焦点在x轴上,所以椭圆的标准方程为+=1.]例6.动点到定点的距离和到定直线的距离之比是常数,求动点点的轨迹。【解析】如图,设是点到直线的距离,根据题意,动点的轨迹就是集合,由此得将上式两边平方,并化简,得即:例7.已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:(1)有两个公共点;(2)有且只有一个公共点;(3)没有公共点.[思路探究] →→→得出结论通过典型例题,掌握根据椭圆的基本几何性质及其简单运用,了解椭圆的第二定义,提升学生数学建模,数形结合,及方程思想,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。 [解] 直线l的方程与椭圆C的方程联立,得方程组消去y,得9x2+8mx+2m2-4=0 ①.方程①的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.(1)当Δ>0,即-3<m<3时,方程①有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l与椭圆C有两个公共点.(2)当Δ=0,即m=±3时,方程①有两个相同的实数解,可知原方程组有两组相同的实数解.这时直线l与椭圆C有且只有一个公共点.(3)当Δ<0,即m<-3或m>3时,方程①没有实数解,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.代数法判断直线与椭圆的位置关系判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交;Δ=0⇔直线与椭圆相切;Δ1,即a2>,解得a>或a

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料