第二章直线和圆的方程
内容索引知识网络考点突破真题体验
1知识网络PARTONE
2考点突破PARTTWO
一、两直线的平行与垂直1.判断两直线平行、垂直的方法(1)若不重合的直线l1与l2的斜率都存在,且分别为k1,k2,则k1=k2⇔l1∥l2.(2)若直线l1与l2的斜率都存在,且分别为k1,k2,则k1·k2=-1⇔l1⊥l2.(讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养.
3
当2-2a=-a,即a=2时,∴AB和CD不平行;∴a=3或a=-1.
∴AB与CD平行.∴AB与CD重合.∴当a=3时,直线AB和直线CD平行.
(2)若点A(4,-1)在直线l1:ax-y+1=0上,则l1与l2:2x-y-3=0的位置关系是______.垂直解析将点A(4,-1)的坐标代入ax-y+1=0,
反思感悟一般式方程下两直线的平行与垂直:已知两直线的方程为l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则l1∥l2⇔A1B2-A2B1=0且C1B2-C2B1≠0,l1⊥l2⇔A1A2+B1B2=0.
跟踪训练1(1)已知直线l1:ax-3y+1=0,l2:2x+(a+1)y+1=0.若l1⊥l2,则实数a的值为____.-3
(2)已知两直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,若l1∥l2,则m=_____.-1解析因为直线x+my+6=0与(m-2)x+3y+2m=0平行,
二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题.2.两直线的交点与距离问题,培养学生的数学运算的核心素养.
A.-1B.5C.-1或5D.-3或3√解得a=-1或a=5,∴实数a的值为-1或5.
(2)过点P(0,1)作直线l使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,求直线l的方程.解设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以直线l的方程为x+4y-4=0.
反思感悟
跟踪训练2(1)设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a,b是关于x的方程x2+x-2=0的两个实数根,则这两条直线之间的距离为√解析根据a,b是关于x的方程x2+x-2=0的两个实数根,可得a+b=-1,ab=-2,∴a=1,b=-2或a=-2,b=1,∴|a-b|=3,
(2)已知直线l过直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点,且点P(0,4)到直线l的距离为2,则这样的直线l的条数为A.0B.1C.2D.3√
所以满足条件的直线l有2条.故选C.方法二依题意,设经过直线l1与l2交点的直线l的方程为2x+3y-8+λ(x-2y+3)=0(λ∈R),即(2+λ)x+(3-2λ)y+3λ-8=0.
三、直线与圆的位置关系1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d,圆的半径长为r.若dr,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ