4.2.2等差数列的前n项和公式(1)本节课选自《2019人教A版高中数学选择性必修二》第四章《数列》,本节课主要学习等差数列的前n项和公式(1)数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。数列是培养学生数学能力的良好题材。等差数列前n项和公式的推导过程中,让学生经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。发展学生逻辑推理、直观想象、数学运算和数学建模的的核心素养。课程目标学科素养A.掌握等差数列前n项和公式的推导方法.B.掌握等差数列的前n项和公式,能够运用公式解决相关问题.C.掌握等差数列的前n项和的简单性质.1.数学抽象:等差数列前n项和公式2.逻辑推理:等差数列前n项和公式的推导3.数学运算:等差数列前n项和公式的运用4.数学建模:等差数列前n项和公式综合运用重点:等差数列的前n项和的应用难点:等差数列前n项和公式的推导方法多媒体
教学过程教学设计意图核心素养目标一、新知探究据说,200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?你准备怎么算呢?高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一.他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献.问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)=高斯的算法实际上解决了求等差数列:1,2,3,…,前100项的和问题等差数列中,下标和相等的两项和相等.设an=n,则a1=1,a2=2,a3=3,…如果数列{an}是等差数列,p,q,s,t∈N*,且p+q=s+t,则ap+aq=as+at可得:问题2:你能用上述方法计算1+2+3+…+101吗?问题3:你能计算1+2+3+…+n吗?通过回顾历史中高斯小故事,提出等差数列求和问题。发展学生数学抽象、数学运算、数学建模的核心素养。
需要对项数的奇偶进行分类讨论.当n为偶数时,+当n为奇数数时,n-1为偶数+对于任意正整数n,都有1+2+3+…+n问题4:不分类讨论能否得到最终的结论呢?将上述两式相加,得所以问题5.上述方法的妙处在哪里?这种方法能够推广到求等差数列的前项和吗?让学生经历由特殊到一般,分类与整合、数学结合等思想方法,感受等差数列求和公式的推导过程。发展学生数学抽象和数学建模的核心素养。
倒序求和法.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式Sn=Sn=功能1:已知a1,an和n,求Sn.功能2:已知Sn,n,a1和an中任意3个,求第4个.二、典例解析例6.已知数列{an}是等差数列.(1)若a1=7,=101,求;(2)若a1=2,=,求;通过典型例题,加深学生对等差数列求和公式的理解。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素。
(3)若=,d=,=5,求;分析:对于(1),可以直接利用公式求和;在(2)中,可以先利用a1和的值求出d,再利用公式求和;(3)已知公式中的,和,解方程即可求得解:(1)因为a1=7,=101,根据公式,可得=2700.(2)因为a1=2,=,所以d=.根据公式,可得=(3)把=,d=,=5代入,得整理,得解得或(舍),所以等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n项和公式中有五个量a1,d,n,an和Sn这五个量可以“知三求二”.一般是利用公式列出基本量a1和d的方程组,解出a1和d,便可解决问题.解题时注意整体代换的思想.通过典型例题,加深学生对等差数列求和公式的综合运用能力。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素
(2)结合等差数列的性质解题:等差数列的常用性质:若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq,常与求和公式Sn=结合使用.跟踪训练1 已知等差数列{an}.(1)a1=,a15=-,Sn=-5,求d和n;(2)a1=4,S8=172,求a8和d.[解] (1)∵a15=+(15-1)d=-,∴d=-.又Sn=na1+d=-5,解得n=15或n=-4(舍).(2)由已知,得S8===172,解得a8=39,又∵a8=4+(8-1)d=39,∴d=5.例7.已知一个等差数列前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的首项和公差吗?分析可得到两个关于的二元一次方程,解这两个二元一次方程所组成的方程组,就可以求得解=310,=1220,把它们代入公式得解方程组,得所以,由所给的条件可以确定等差数列的首项和公差。一般地,对于等差数列,只要给定两个相互独立的条件,这个数列就完全确定。(法二)∵数列{an}为等差数列,∴S10,S20-S10,S30-S20也成等差数列,
∴2(S20-S10)=S10+S30-S20,即2×(1220-310)=310+S30-1220,∴S30=2730.(法三)设Sn=An2+Bn(A,B为常数).由题意,得解得∴Sn=3n2+n.∴S30=3×900+30=2730.(法四)由Sn=na1+d,得=a1+(n-1),∴是以a1为首项,为公差的等差数列,∴,,成等差数列,∴+=2×,∴S30=30=30×(122-31)=2730.三、达标检测1.在等差数列{an}中,若a3+a5+a7+a9+a11=100,则3a9-a13的值为( )A.20 B.30C.40D.50【答案】C [∵a3+a11=a5+a9=2a7,∴a3+a5+a7+a9+a11=5a7=100,∴a7=20.∴3a9-a13=3(a7+2d)-(a7+6d)=2a7=40.]2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=( )A.5B.7C.9D.11【答案】A [由题a1+a3+a5=3,∴3a3=3.∴a3=1又∵S5===5.]3.已知数列{an}的前n项和为Sn=-n2,则( )A.an=2n+1B.an=-2n+1C.an=-2n-1D.an=2n-1【答案】B [由an=Sn-Sn-1(n≥2)得an=1-2n,当n=1时,S1=a1=-1符合上式.∴an=-2n+1.]4.在一个等差数列中,已知a10=10,则S19=________.通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。
【答案】190 [S19===190.]5.已知等差数列{an}中,a1=,d=-,Sn=-15,求n及a12.【答案】∵Sn=n·+·-=-15,整理得n2-7n-60=0,解之得n=12或n=-5(舍去),a12=+(12-1)×=-4.四、小结五、课时练通过总结,让学生进一步巩固本节所学内容,提高概括能力。由于教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者。所以我采用“问题情景---建立模型---求解---解释---应用”的教学模式,启发引导学生通过对问题的亲身动手探求、体验,获得不仅是知识,更重要的是掌握了在今后的发展中用这种手段去获取更多的知识的方法。这是“教师教给学生寻找水的方法或给学生一杯水,使学生能找到一桶水乃至更多活水”的求知方式。多媒体可以使教学内容生动、形象、鲜明地得到展示。