人教版高中数学选择性必修第二册4.2.2《等差数列的前n项和公式》(2)教学设计
加入VIP免费下载

人教版高中数学选择性必修第二册4.2.2《等差数列的前n项和公式》(2)教学设计

ID:1235508

大小:250 KB

页数:8页

时间:2022-08-27

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
4.2.2等差数列的前n项和公式(2)本节课选自《2019人教A版高中数学选择性必修二》第四章《数列》,本节课主要学习等差数列的前n项和公式(2)数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。数列是培养学生数学能力的良好题材。等差数列前n项和公式的推导过程中,让学生经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。发展学生逻辑推理、直观想象、数学运算和数学建模的的核心素养。课程目标学科素养A.等差数列掌握等差数列前n项和的性质及应用.B.会求等差数列前n项和的最值.1.数学抽象:等差数列前n项和公式2.逻辑推理:等差数列前n项和公式与二次函数3.数学运算:等差数列前n项的应用4.数学建模:等差数列前n项的具体应用重点:求等差数列前n项和的最值难点:等差数列前n项和的性质及应用多媒体 教学过程教学设计意图核心素养目标一、课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列也是等差数列.(  )(2)若a1>0,d480,∴在24小时内能构筑成第二道防线. 例9.已知等差数列{an}的前n项和为Sn,若a1=10,公差d=-2,Sn是否存在最大值?若存在,求Sn的最大值及取得最大值时n的值;若不存在,请说明理由.分析数项的和。另一方面,等差数列的前n项和公式可写成,所以当时,可以看成二次函数,当=时函数值。如图,当时,关于的图像是一条开口向下的抛物线上的一些点,因此,可以利用二次函数求相应的,的值。解法1.由d=-2,得an+1-an=-2<0,得an+1<an,所以{an}是递减数列.由a1=10,d=-2,得an=10+(n-1)×(-2)=-2n+12.可知,当n<6时,an>0;当n=6时,an=0;当n>6时,an<0.所以,S1<S2<…<S5=S6>S7>…也就是说,当n=5或6时,Sn最大.因为=30所以Sn的最大值为30.通过典型例题,加深学生对等差数列求和公式函数特征的理解。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素。 解法2:因为由a1=10,d=-2,因为所以,当n取与最接近的整数,即5或6时,Sn最大,最大值为30.1.在等差数列中,求Sn的最小(大)值的方法:(1)利用通项公式寻求正、负项的分界点,则从第一项起到分界点该项的各项和为最大(小).(2)借助二次函数的图象及性质求最值.2.寻求正、负项分界点的方法:(1)寻找正、负项的分界点来寻找.(2)利用到y=ax2+bx(a≠0)的对称轴距离最近的左侧的一个正数或离对称轴最近且关于对称轴对称的两个整数对应项即为正、负项的分界点.跟踪训练2.数列{an}的前n项和Sn=33n-n2,(1)求{an}的通项公式;(2)问{an}的前多少项和最大;(3)设bn=|an|,求数列{bn}的前n项和Sn′.分析:(1)利用Sn与an的关系求通项,也可由Sn的结构特征求a1,d,从而求出通项.(2)利用Sn的函数特征求最值,也可以用通项公式找到通项的变号点求解(3)利用an判断哪些项是正数,哪些项是负数,再求解,也可以利用Sn通过典型例题,加深学生对等差数列求和公式的综合运用能力。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素 的函数特征判断项的正负求解.[解] (1)法一:(公式法)当n≥2时,an=Sn-Sn-1=34-2n,又当n=1时,a1=S1=32=34-2×1满足an=34-2n.故{an}的通项公式为an=34-2n.法二:(结构特征法)由Sn=-n2+33n知Sn是关于n的缺常数项的二次型函数,所以{an}是等差数列,由Sn的结构特征知解得a1=32,d=-2,所以an=34-2n.(2)法一:(公式法)令an≥0,得34-2n≥0,所以n≤17,故数列{an}的前17项大于或等于零.又a17=0,故数列{an}的前16项或前17项的和最大.法二:(函数性质法)由y=-x2+33x的对称轴为x=.距离最近的整数为16,17.由Sn=-n2+33n的图象可知:当n≤17时,an≥0,当n≥18时,anS5,有下列四个命题正确的是(  )A.d0;C.S12S7,∴a7S5,∴a6+a7>0,∴a6>0,∴d0,B正确.S12=(a1+a12)=6(a6+a7)>0,C不正确.{Sn}中最大项为S6,D不正确.故正确的是AB]2.已知等差数列{an}中,|a5|=|a9|,公差d>0,则使得前n项和Sn取得最小值的正整数n的值是________.【答案】6或7 [由|a5|=|a9|且d>0得a50,且a5+a9=0⇒2a1+12d=0⇒a1+6d=0,即a7=0,故S6=S7且最小.]3.已知数列{an}的前n项和公式为Sn=n2-30n.(1)求数列{an}的通项公式an;(2)求Sn的最小值及对应的n值.【答案】 (1)∵Sn=n2-30n,∴当n=1时,a1=S1=-29.当n≥2时,an=Sn-Sn-1=(n2-30n)-[(n-1)2-30(n-1)]=2n-31.∵n=1也适合,∴an=2n-31,n∈N*.(2)法一:Sn=n2-30n=2-225∴当n=15时,Sn最小,且最小值为S15=-225.法二:∵an=2n-31,∴a10,则S1是{Sn}的最小值;若a1

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料