人教版高中数学选择性必修第三册4.3.1《等比数列的概念》(2)导学案 (含答案)
加入VIP免费下载

人教版高中数学选择性必修第三册4.3.1《等比数列的概念》(2)导学案 (含答案)

ID:1235703

大小:1.08 MB

页数:7页

时间:2022-08-27

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
4.3.1等比数列的概念(2)导学案1.能够运用等比数列的知识解决简单的实际问题.2.能够运用等比数列的性质解决有关问题.(重点)重点:运用等比数列解决简单的实际问题难点:等比数列的综合运用1.等比数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母表示(显然).符号语言:2.等差与等比数列一、典例解析例4.用10000元购买某个理财产品一年. (1)若以月利率的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到)?一般地,涉及产值增长率、银行利息、细胞繁殖等实际问题时,往往与等比数列有关,可建立等比数列模型进行求解.跟踪训练1.2017年,某县甲、乙两个林场森林木材的存量分别为16a和25a,甲林场木材存量每年比上一年递增25%,而乙林场木材存量每年比上一年递减20%.(1)哪一年两林场木材的总存量相等?(2)两林场木材的总量到2021年能否翻一番?例5.已知数列的首项.(1)若为等差数列,公差,证明数列为等比数列;(2)若为等比数列,公比,证明数列为等差数列.是等差数列,则数列是等比数列;2.若数列是各项均为正的等比数列,则数列是等差数列例6.某工厂去年12月试产1050个高新电子产品,产品合格率为 .从今年1月开始,工厂在接下来的两年中将生产这款产品.1月按去年12月的产量和产品合格率生产,以后每月的产量都在前一个月的基础上提高,产品合格率比前一个月增加,那么生产该产品一年后,月不合格品的数量能否控制在100个以内?1.(2021·江苏南通市高二期末)在流行病学中,基本传染数是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假定某种传染病的基本传染数,那么感染人数由1个初始感染者增加到2000人大约需要的传染轮数为()注:初始感染者传染个人为第一轮传染,这个人再传染个人为第二轮感染.A.5B.6C.7D.82.(2021·北京高二期末)已知等比数列的各项均为正数,且,则.3.已知Sn是数列{an}的前n项和,且Sn=2an+n-4.(1)求a1的值.(2)若bn=an-1,试证明数列{bn}为等比数列.4.已知a,b,c,x,y,z都是不等于1的正数,且ax=by=cz,成等差数列.求证:a,b,c成等比数列. 参考答案:知识梳理学习过程一、典例解析例4.分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为元,每期的利率为,则从第一期开始,各期的本利和,,…构成等比数列.解:(1)设这笔钱存个月以后的本利和组成一个数列,则是等比数列,首项,公比,所以.所以,12个月后的利息为(元).解:(2)设季度利率为,这笔钱存个季度以后的本利和组成一个数列,则也是一个等比数列,首项,公比为,于是.因此,以季度复利计息,存4个季度后的利息为元.解不等式,得.所以,当季度利率不小于时,按季结算的利息不少于按月结算的利息. 跟踪训练1.解:(1)由题意可得16a(1+25%)n-1=25a(1-20%)n-1,解得n=2,故到2019年两林场木材的总存量相等.(2)令n=5,则a5=16a4+25a4

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料