人教版高中数学选择性必修第三册同步课件7.1.2《全概率公式》(含答案)
加入VIP免费下载

人教版高中数学选择性必修第三册同步课件7.1.2《全概率公式》(含答案)

ID:1235820

大小:609 KB

页数:28页

时间:2022-08-27

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
7.1.2全概率公式 课标要求素养要求1.结合古典概型,会用乘法公式计算概率.2.结合古典概型,会利用全概率公式计算概率.通过学习及运用全概率公式,进一步提升数学抽象及数学运算素养. 新知探究狼来了这个故事大家都听过,那么从心理学角度分析,这个小孩是如何一步步丧失村民信任的呢?我们可以通过特殊概率公式来解读. 设A为事件“小孩说谎”,B为“村民觉得小孩可信”;不妨设可信的小孩说谎的概率为0.1,而不可信的小孩说谎的概率为0.5,经过第一次撒谎,第二次撒谎后,狼真的来了,小孩第三次呼救的时候,村民都不再相信这是真的,觉得这是谁家熊孩子真气人,没人再上山救他.于是,狼在前两次跳出来吓唬完小孩就跑走后,成功在第三次抓走小孩,而且无人打扰,由此可见心理学结合概率统计学很重要!问题 上述问题可以用哪种概率公式来解释?提示我们可以借助全概率公式来解读. 1.全概率公式在全概率的实际问题中我们经常会碰到一些较为复杂的概率计算,这时,我们可以用“化整为零”的思想将它们分解为一些较为容易的情况分别进行考虑 2.贝叶斯公式设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意事件B⊆Ω,P(B)>0, 3.在贝叶斯公式中,P(Ai)和P(Ai|B)分别称为______概率和______概率.先验后验拓展深化[微判断]1.全概率公式为概率论中的重要公式,它将对一个复杂事件A的概率求解问题,转化为了在不同情况下发生的简单事件的概率的求和问题.()2.所研究的事件试验前提或前一步骤有多种可能,在这多种可能中,均有所研究的事件发生,这时要求所研究事件的概率就可用全概率公式.()3.全概率公式用于求复杂事件的概率,是求最后结果的概率.()√√√ [微训练]1.一个盒子中有6只白球,4只黑球,不放回地每次任取1只,连取2次,求第二次取到白球的概率为________.解析设A=“第一次取到白球”,B=“第二次取到白球”, 2.有两箱同一种产品,第一箱内装50件,其中10件优质品,第二箱内30件,其中18件优质品,现在随意地打开一箱,然后从箱中随意取出一件,则取到的是优质品的概率是________. [微思考]全概率公式与贝叶斯公式的联系与区别是什么?提示两者的最大不同是处理的对象不同,其中全概率公式用来计算复杂事件的概率,而贝叶斯公式是用来计算简单条件下发生的复杂事件的概率,也就是说,全概率公式是计算普通概率的,贝叶斯公式是用来计算条件概率的. 题型一 全概率公式【例1】甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7.飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6,若三人都击中,飞机必定被击落,求飞机被击落的概率.解设B=“飞机被击落”,Ai=“飞机被i人击中”,i=1,2,3,则B=A1B+A2B+A3B,P(B|A1)=0.2,P(B|A2)=0.6,P(B|A3)=1,由全概率公式,得 P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3).为求P(Ai),设Hi={飞机被第i人击中},i=1,2,3,则P(H1)=0.4,P(H2)=0.5,P(H3)=0.7,故 P(A3)=P(H1H2H3)=P(H1)P(H2)P(H3)=0.14.于是P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.36×0.2+0.41×0.6+0.14×1=0.458,即飞机被击落的概率为0.458.规律方法全概率公式主要用于计算比较复杂事件的概率,它们实质上是加法公式和乘法公式的综合运用. 【训练1】有一批产品是由甲、乙、丙三厂同时生产的,其中甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%,丙厂产品正品率为85%,如果从这批产品中随机抽取一件,试计算该产品是正品的概率多大?解设A,B,C分别表示抽得产品是甲厂、乙厂、丙厂生产的,D表示抽得产品为正品,则由已知,P(A)=50%,P(B)=30%,P(C)=20%,P(D|A)=95%,P(D|B)=90%,P(D|C)=85%,从而任取一件产品为正品的概率可由全概率公式得到:P(D)=P(D|A)P(A)+P(D|B)P(B)+P(D|C)P(C)=0.915. 题型二 贝叶斯公式【例2】在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0,已知发送信号0时,接收为0和1的概率分别为0.8和0.2;发送信号1时,接收为1和0的概率分别为0.9和0.1.假设发送信号0和1是等可能的.若已知接收的信号为0,求发送的信号是1的概率. 规律方法此类问题在实际中更为常见,它所求的是条件概率,是已知某结果发生条件下,求各原因发生的可能性大小. 【训练2】设某公路上经过的货车与客车的数量之比为2∶1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率.解设B=“中途停车修理”,A1=“经过的是货车”,A2=“经过的是客车”,则B=A1B∪A2B,由贝叶斯公式有 题型三 全概率公式与贝叶斯公式的综合应用【例3】同一种产品由甲、乙、丙三个厂供应.由长期的经验知,三家的正品率分别为0.95,0.90,0.80,三家产品数按2∶3∶5的比例混合在一起.(1)从中任取一件,求此产品为正品的概率;(2)现取到一件产品为正品,问它是由甲、乙、丙三个厂中哪个厂生产的可能性大?解设事件A表示“取到的产品为正品”,B1,B2,B3分别表示“产品由甲、乙、丙厂生产”,由已知P(B1)=0.2,P(B2)=0.3,P(B3)=0.5, P(A|B1)=0.95,P(A|B2)=0.9,P(A|B3)=0.8,(1)由全概率公式得:=0.2×0.95+0.3×0.9+0.5×0.8=0.86,(2)由贝叶斯公式得 由以上3个数作比较,可知这件产品由丙厂生产的可能性最大,由甲厂生产的可能性最小. 规律方法P(Ai)(i=1,2,…,n)是在没有进一步信息(不知道事件B是否发生)的情况下,人们对诸事件发生可能性大小的认识,当有了新的信息(知道B发生),人们对诸事件发生可能性大小P(Ai|B)有了新的估计,贝叶斯公式从数量上刻画了这种变化. 解设A=“迟到”;B1=“乘飞机”;B2=“乘动车”;B3=“乘非机动车”.(1)所求概率为P(A),由全概率公式得:P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3) 一、素养落地1.通过本节课的学习,提升数学抽象及逻辑推理素养.2.全概率公式是用来计算一个复杂事件的概率,它需要将复杂事件分解成若干简单事件的概率运算,即运用了“化整为零”的思想处理问题.3.概率论的一个重要内容是研究怎样从一些较简单事件概率的计算来推算较复杂事件的概率,全概率公式和贝叶斯公式正好起到了这样的作用. 二、素养训练1.袋中有50个乒乓球,其中20个是黄球,30个是白球.今有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率为() 2.已知5%的男人和0.25%的女人患色盲,假设男人、女人各占一半,现随机地挑选一人,则此人恰是色盲的概率为()A.0.01245B.0.05786C.0.02625D.0.02865 3.设某公路经过的货车与客车的数量之比为1∶3,货车中途停车修车的概率为0.03,客车为0.02,今有一辆汽车中途停车修理,则该车是客车的概率是()解析设B={中途停车修理},A1={经过的是客车},A2={经过的是货车},则B=A1B∪A2B.由贝叶斯公式有P(A1|B) 答案B

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料