《匀变速直线运动的位移与时间的关系》教案教学目标(一)知识与技能1.知道匀变速直线运动的位移与吋间的关系。2.了解位移公式的推导方法,学握位移公式。3.理解匀变速直线运动的位移与时间的关系及其应用。(二)过程与方法1.通过近似推导位移公式的过程,体验微元法的特点和技巧,能把瞬时速度的求法与此比较。2.感悟一些数学方法的应用特点。(三)情感态度与价值观1.经历微元法推导公式和公式法推导速度位移关系,培养自己动手的能力,增加物理情感。2.体验成功的快乐方法的意义,增强科学能力的价值观。二、教学重点1.理解匀变速直线运动的位移与时间的关系及其应用.2.理解匀变速直线运动的位移与速度的关系。三、教学难点1.图象中图线与轴所夹的面积表示物体在这段时间内运动的位移2.微元法推导位移吋间关系3.匀变速直线运动的位移与时间的关系及其灵活应用。四、教学准备多媒体课件、粉笔、图片。五、教学过程新课导入:匀变速直线运动跟我们生活的关系密切,研究匀变速直线运动的很有意义。对于运动问题,人们不仅关注物体运动的速度随时间变化的规律,而且还希望知道物体运动的位移随时间变化的规律。
我们用我国古代数学家刘徽的思想方法來探究匀变速直线运动的位移与时间的关系。新课讲解:一、匀速直线运动的位移我们先从最简单的匀速直线运动的位移与时间的关系入手,讨论位移与时间的关系。我们取初始吋刻质点所在的位置为坐标原点,则有[时刻原点的位置坐标x与质点在0〜r—段时间间隔内的位移相同,得出位移公式x=vt,请大家根据速度一时间图象的意义,画出匀速直线运动的速度一时间图象学生动手定性画出一质点做匀速直线运动的速度一吋间图象,如图所示:问:请同学们结合自己所画的图象,求图线与初、末吋刻和吋间轴围成的矩形血积。当速度为正值和为负值时,它们的位移有什么不同?位移兀>0表示位移方向与规定的正方向相同,位移XV0表示位移方向与规定的正方向相反。对于匀变速直线运动,它的位移与它的v-t图象,是不是也有类似的方法呢?二、匀变速直线运动的位移思考与讨论学生阅读教材第40页思考与讨论栏目,老师组织学生讨论这一问题.(课件投影)在“探究小车的运动规律”的测量记录中,某同学得到了小车在0,1,2,3,4,5几个位置的瞬时速度。如下表:位置编号012345时间//s00.10.20.30.40.5
速度v/(m*5_l)0.380.630.881.111.381.62能否根据表中的数据,用最简便的方法估算实验中小车从位置0带位置5的位移?学生讨论后回答。当我们在上面的讨论中不是取0.1s时,而是取的更小些。比如0.06s,同样用这个方法计算,误差会更小些,若取0.04s、0.02s……误差会怎样?交流与讨论(课件投影)请同学们阅读下面的关于刘徽的“割圆术”。分割和逼近的方法在物理学研究中有着广泛的应用。早在公元前263年,魏晋时的数学家刘徽首创了“割圆术”一一圆内正多边形的边数越多,其周长和面积就越接近圆的周长和面积,他著有《九章算术》,在书中有很多创见,尤其是用割圆术來计算圆周率的想法,含有极限观念,是他的一个大创造。他用这种方法计算了圆内接正192边行的周长,得到了圆周率的近似值龙=157/50(=3.14)后来有计算了圆内接正3072边行的周长,又得到了圆周率的近似值龙=3927/1250(=3.1416),用正多边形逐渐增加的方法来计算圆周率,早在古希腊的数学家阿基米德首先采用,但是阿基米德是同时采用内接和外切两种计算,而刘徽只用内接,因而较阿基米德的方法简便得多。学生讨论刘徽的“割圆术”和他的圆周率,体现里面的“微分”思想方法下面我们采用这种思想方法研究匀加速直线运动的速度一时间图彖。一物体做匀变速直线运动的速度一时间图象如图所示(见书41页)。请同学们思考这个物体的速度一时间图象,用口己的语言來描述该物体的运动情况,我们模仿刘徽的“割圆术”做法,來“分割”图象中图线与初、末时刻线和时间轴图线所围成的血积。请大家讨论将学生分组后各个进行“分割”操作。请人家对比不同组所做的分割,当他们分成的小段数目越长条矩形与倾斜直线间所夹的小三角形面积越小,这说明什么?当然,我们上面的做法是粗糙的,为了精确一些,可以把运动过程划分为更多的小段,如图丙,用所有这些小段的位移之和,近似代表物体在整个过程中的位移。从v-t图象上看,就是用更多的但更窄的小矩形的面积之和代表物体的位移。可以想象如果把整个运动过程划分的非常非常细,很多很多小矩形面积Z和就能准确的代表物体的位移。这些小矩形合在一起组成一个梯形OABC,梯形OABC的面积就代表做匀变速直线运
动的物体在0寸这段时间内的位移。教师引导学生分析求解梯形的面积,指导学生怎样求梯形的面积。这个位移公式虽然是在匀加速直线运动的情景下导出的,但也同样适用与匀减速直线运动。在公式x=v.t^--at2中,我们讨论一下并说明各物理量的意义,以及应该注意的问题。2注意这里哪些是矢量,讨论一下应该注意哪些问题。物体做直线运动时,矢量的方向性可以在选定正方向后,用正、负来体现。方向与规定的正方向相同时,矢量取正值,方向与规定正方向相反时,矢量取负值。一般我们都选物体的运动方向或是初速度的方向为正在匀减速直线运动中,如刹车问题中,尤其要注意加速度的方向与运动方向相反。进一步加深对公式的理解,用图象法看血积的大小。把血积分割成两块,一块是矩形,一块是三角形,两者之和即为正个过程的位移。适用与匀加速(匀减速)直线运动。教师画匀加速直线运动,学生自己画图体验匀减速直线运动。