新人教A版必修2 高中数学 4.1.1 圆的标准方程式 课件
加入VIP免费下载

新人教A版必修2 高中数学 4.1.1 圆的标准方程式 课件

ID:1237756

大小:1.76 MB

页数:25页

时间:2022-09-01

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
4.1.1圆的标准(biāozhǔn)方程第一页,共25页。 我们(wǒmen)在前面学过,在平面直角坐标系中,两点确定一条直线,一点和倾斜角也能确定一条直线.在平面直角坐标系中,如何确定一个圆呢?复习(fùxí)引入AMrxOy问题(wèntí)第二页,共25页。 当圆心位置与半径大小确定后,圆就唯一确定了.因此一个(yīɡè)圆最基本要素是圆心和半径.xOyA(a,b)Mr(x,y)引入新课如图,在直角坐标(zuòbiāo)系中,圆心(点)A的位置用坐标(zuòbiāo)(a,b)表示,半径r的大小等于圆上任意点M(x,y)与圆心A(a,b)的距离.第三页,共25页。 符合(fúhé)上述条件的点的集合是什么?你能用描述法来表示这个集合吗?符合上述条件(tiáojiàn)的点的集合:圆的方程(fāngchéng)xOyA(a,b)Mr(x,y)问题第四页,共25页。 圆上任意点M(x,y)与圆心A(a,b)之间的距离能用什么公式(gōngshì)表示?圆的方程(fāngchéng)根据两点间距离公式:则点M、A间的距离为:即:第五页,共25页。 是否在圆上的点都适合这个方程(fāngchéng)?是否适合这个方程(fāngchéng)的坐标的点都在圆上?圆的标准(biāozhǔn)方程点M(x,y)在圆上,由前面讨论可知,点M的坐标适合方程;反之,若点M(x,y)的坐标适合方程,这就说明点M与圆心(yuánxīn)的距离是r,即点M在圆心(yuánxīn)为A(a,b),半径为r的圆上.问题把这个方程称为圆心为A(a,b),半径长为r的圆的方程,把它叫做圆的标准方程.第六页,共25页。 特殊位置(wèizhi)的圆方程因为(yīnwèi)圆心是原点O(0,0),将a=0,b=0和半径r带入圆的标准方程:问题(wèntí)圆心在坐标原点,半径长为r的圆的方程是什么?得:整理得:第七页,共25页。 1(口答)、求圆的圆心(yuánxīn)及半径(1)、x2+y2=4(2)、(x+1)2+y2=1Xy0+2-2C(0、0)r=2XY0-1C(-1、0)r=1练习(liànxí)第八页,共25页。 (1)x2+y2=9(2)(x+3)2+(y-4)2=52、写出下列(xiàliè)圆的方程(1)、圆心在原点,半径为3;(2)、圆心在(-3、4),半径为.练习(liànxí)第九页,共25页。 例1写出圆心为,半径(bànjìng)长等于5的圆的方程,并判断点,是否在这个圆上.典型(diǎnxíng)例题第十页,共25页。 例1写出圆心为,半径长等于5的圆的方程,并判断点,是否在这个圆上.解:圆心是,半径长等于5的圆的标准方程是:把的坐标代入方程左右两边相等,点的坐标适合圆的方程,所以点在这个圆上;典型(diǎnxíng)例题把点的坐标代入此方程,左右两边不相等,点的坐标不适合圆的方程,所以点不在这个圆上.第十一页,共25页。 例1写出圆心为,半径长等于5的圆的方程,并判断点,是否在这个圆上.解:圆心是,半径长等于(děngyú)5的圆的标准方程是:典型(diǎnxíng)例题AxyoM1M2第十二页,共25页。 怎样判断(pànduàn)点在圆内呢?还是在圆外呢?点与圆的位置(wèizhi)关系探究(tànjiū)AxyoM1M2M3从上题知道,判断一个点在不在某个圆上,只需将这个点的坐标带入这个圆的方程,如果能使圆的方程成立,则在这个圆上,反之如果不成立则不在这个圆上.第十三页,共25页。 怎样判断点在圆内呢?还是在圆外呢?点与圆的位置(wèizhi)关系探究(tànjiū)AxyoM1M2M3可以看到:点在圆外——点到圆心(yuánxīn)的距离大于半径r;点在圆内——点到圆心的距离小于半径r.第十四页,共25页。 例2的三个顶点的坐标分别(fēnbié)A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.分析:不在同一条直线上的三个点可以确定一个(yīɡè)圆,三角形有唯一的外接圆.典型(diǎnxíng)例题第十五页,共25页。 例2的三个顶点的坐标分别A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.分析:不在同一条(yītiáo)直线上的三个点可以确定一个圆,三角形有唯一的外接圆.解:设所求圆的方程是(1)因为A(5,1),B(7,-3),C(2,-8)都在圆上,所以它们的坐标都满足(mǎnzú)方程(1).于是典型(diǎnxíng)例题第十六页,共25页。 所以,的外接圆的方程.典型(diǎnxíng)例题解此方程组,得:分析:不在同一条直线(zhíxiàn)上的三个点可以确定一个圆,三角形有唯一的外接圆.解:例2的三个顶点的坐标分别A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.第十七页,共25页。 例3已知圆心(yuánxīn)为C的圆经过点A(1,1)和B(2,-2),且圆心(yuánxīn)C在直线上l:x-y+1=0,求圆心(yuánxīn)为C的圆的标准方程.典型(diǎnxíng)例题第十八页,共25页。 例3已知圆心(yuánxīn)为C的圆经过点A(1,1)和B(2,-2),且圆心(yuánxīn)C在直线上l:x-y+1=0,求圆心(yuánxīn)为C的圆的标准方程.分析:已知道确定一个圆只需要确定圆心的位置与半径大小.圆心为C的圆经过点A(1,1)和B(2,-2),由于圆心C与A,B两点的距离相等,所以圆心C在线段AB的垂直平分线上.又圆心C在直线l上,因此圆心C是直线l与直线的交点,半径长等于|CA|或|CB|.解:因为A(1,1)和B(2,-2),所以线段AB的中点D的坐标直线(zhíxiàn)AB的斜率:典型(diǎnxíng)例题第十九页,共25页。 因此线段AB的垂直平分线的方程是即圆心C的坐标是方程组的解.典型(diǎnxíng)例题例3已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线上l:x-y+1=0,求圆心为C的圆的标准(biāozhǔn)方程.解:第二十页,共25页。 所以圆心C的坐标是圆心(yuánxīn)为C的圆的半径长所以(suǒyǐ),圆心为C的圆的标准方程是典型(diǎnxíng)例题解此方程组,得例3已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线上l:x-y+1=0,求圆心为C的圆的标准方程.解:第二十一页,共25页。 XY0C(8、3)P(5、1)1、已知圆经过(jīngguò)P(5、1),圆心在C(8、3),求圆方程.(x-8)2+(y-3)2=13课题(kètí)练习第二十二页,共25页。 XC(1、3)3x-4y-6=0Y0课题(kètí)练习2、求以c(1、3)为圆心(yuánxīn),并和直线3x-4y-6=0相切的圆的方程.第二十三页,共25页。 知识(zhīshi)小结圆的基本要素圆的标准方程圆心在原点的圆的标准方程判断点与圆的位置关系第二十四页,共25页。 作业(zuòyè)布置:P124习题(xítí)4.1A组第2,3题第二十五页,共25页。

10000+的老师在这里下载备课资料