4.1.1 圆的标准方程【教学目标】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题2.通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.【教学重难点】教学重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.教学难点:运用圆的标准方程解决一些简单的实际问题.【教学过程】(一)情景导入、展示目标前面,大家学习了圆的概念,哪一位同学来回答?1:具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆).2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?
圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.(二)检查预习、交流展示求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9(2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明.其中步骤(1)(3)(4)必不可少.(三)合作探究、精讲精练探究一:如何建立圆的标准方程呢?1.建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法.教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).2.写点集
根据定义,圆就是集合P={M||MC|=r}.3.列方程由两点间的距离公式得:4.化简方程将上式两边平方得:(x-a)+(y-b)=r (1)方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x+y=r.教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.例1 写出下列各圆的方程:(请三位同学演板)(1)圆心在原点,半径是3;(3)经过点P(5,1),圆心在点C(8,-3);解析:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.解:(1)x+y=9;(2)(x-3)+(y-4)=5;
点评:圆的标准方程与圆心坐标、半径长密切相关,应熟练掌握.变式训练1:说出下列圆的圆心和半径:(学生回答)(1)(x-3)+(y-2)=5; (2)(x+4)+(y+3)=7; (3)(x+2)+y=4答案:(1)圆心是(3,2),半径是;(2)圆心是(-4,-3),半径是;(3)圆心是(-2,0),半径是2.例2 (1)已知两点P(4,9)和P2(6,3),求以PP为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?解析:分析一:从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决;分析二:从图形上动点P性质考虑,用求曲线方程的一般方法解决.解:(1)解法一:(学生口答)设圆心C(a,b)、半径r,则由C为PP的中点得:又由两点间的距离公式得:∴所求圆的方程为:(x-5)+(y-6)=10解法二:(给出板书)∵直径上的四周角是直角,∴对于圆上任一点P(x,y),有PP⊥PP.
化简得:x+y-10x-12y+51=0.即(x-5)+(y-6)=10为所求圆的方程.解(2):(学生阅读课本)分别计算点到圆心的距离:因此,点M在圆上,点N在圆外,点Q在圆内.点评:1.求圆的方程的方法(1)待定系数法,确定a,b,r;(2)轨迹法,求曲线方程的一般方法.2.点与圆的位置关系设点到圆心的距离为d,圆半径为r:(1)点在圆上d=r;(2)点在圆外d>r;(3)点在圆内d<r.变式训练2:求证:以A(x,y)、B(x,y)为直径端点的圆的方程为(x-x)(x-x)+(y-y)(y-y)=0.
证明:略.(四)反馈测试导学案当堂检测 (五)总结反思、共同提高1.圆的方程的推导步骤;2.圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;3.求圆的方程的两种方法:(1)待定系数法;(2)轨迹法.【板书设计】探究一:圆的标准方程1.建系设点2.写点集3.列方程4.化简方程探究二:圆的方程形式特点例1 变式训练1例2 变式训练2课堂小结【作业布置】导学案课后练习与提高学校--临清实高学科--数学编写人—刘肖审稿人--周静4.1.1 圆的标准方程
课前预习学案一.预习目标回忆圆的定义,初步了解用方程建立圆的标准方程.二.预习内容1:圆的定义是怎样的?2:圆的特点是什么?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容课内探究学案一.学习目标1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题.2.通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.学习重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.学习难点:运用圆的标准方程解决一些简单的实际问题.
二.学习过程探究一:如何建立圆的标准方程呢?1.建系设点2.写点集3.列方程4.化简方程探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?例1 写出下列各圆的方程:(请四位同学演板)(1)圆心在原点,半径是3;(3)经过点P(5,1),圆心在点C(8,-3);变式训练1:说出下列圆的圆心和半径:(学生回答)(1)(x-3)+(y-2)=5;
(2)(x+4)+(y+3)=7;(3)(x+2)+y=4例2 (1)已知两点P(4,9)和P(6,3),求以PP为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?变式训练2:求证:以A(x,y)、B(x,y)为直径端点的圆的方程为(x-x)(x-x)+(y-y)(y-y)=0.三.反思总结圆的定义几何特征方程特征待定系数法法轨迹法法四.当堂检测1.圆(x+1)2+(y-2)2=4的圆心、半径是()A.(1,-2),4B.(1,-2),2C.(-1,2),4D.(-1,2),22.过点A(4,1)的圆C与直线相切于点B(2,1).则圆C的方程为.
3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.参考答案:1.D 2. 课后练习与提高1.圆的周长是( )A. B. C.2 D. 2.点P()与圆的位置关系是()A.在圆外 B.在圆内 C.在圆上 D.不确定3.已知圆C与圆关于直线对称,则圆C的方程为( )A. B. C. D.4.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切。则圆C的方程为.
5.已知圆心在x轴上,半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是 .6.赵州桥的跨度是37.4m,圆拱高约为7.2m,求这座圆拱桥的拱圆的方程.