高中数学人教A版必修2第四章 圆与方程4.1.1 圆的标准方程 学案
加入VIP免费下载

高中数学人教A版必修2第四章 圆与方程4.1.1 圆的标准方程 学案

ID:1238340

大小:520 KB

页数:12页

时间:2022-09-01

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
4.1 圆的方程4.1.1 圆的标准方程1.会用定义推导圆的标准方程并掌握圆的标准方程的特征.(重点)2.能根据所给条件求圆的标准方程.(重点、难点)3.掌握点与圆的位置关系.(易错点)[基础·初探]教材整理1 圆的标准方程阅读教材P118~P119第1行的内容,完成下列问题.1.以C(a,b)为圆心,r(r>0)为半径的圆的标准方程为(x-a)2+(y-b)2=r2.2.以原点为圆心,r为半径的圆的标准方程为x2+y2=r2.判断(正确的打“√”,错误的打“×”)(1)圆心位置和圆的半径确定,圆就惟一确定.(  )(2)方程(x-a)2+(y-b)2=m2一定表示圆.(  )(3)圆(x+2)2+(y+3)2=9的圆心坐标是(2,3),半径是9.(  ) 【解析】 (1)正确.确定圆的几何要素就是圆心和半径.(2)错误.当m=0时,不表示圆.(3)错误.圆(x+2)2+(y+3)2=9的圆心为(-2,-3),半径为3.【答案】 (1)√ (2)× (3)×教材整理2 点与圆的位置关系阅读教材P119“例1”及“探究”部分,完成下列问题.设点P到圆心的距离为d,圆的半径为r,则点与圆的位置关系对应如下:位置关系点在圆外点在圆上点在圆内d与r的大小关系d>rd=rd<r已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)(  )A.是圆心  B.在圆上C.在圆内D.在圆外【解析】 圆心M(2,3),半径r=2,∵|PM|==<r,∴点P在圆内.【答案】 C[小组合作型]直接法求圆的标准方程 (1)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为(  )A.x2+(y-2)2=1    B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1(2)已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是(  )A.(x-2)2+(y+3)2=13B.(x+2)2+(y-3)2=13 C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=52【精彩点拨】 (1)设出圆心坐标,利用两点间的距离公式求圆心坐标,再写出圆的标准方程.(2)根据中点坐标公式求出直径两端点坐标,进而求出圆的半径,再写出圆的标准方程.【自主解答】 (1)设圆心坐标为(0,b),则由题意知=1,解得b=2.故圆的方程为x2+(y-2)2=1.(2)设此直径两端点分别为(a,0),(0,b),由于圆心坐标为(2,-3),所以a=4,b=-6,所以圆的半径r==,从而所求圆的方程是(x-2)2+(y+3)2=13.【答案】 (1)A (2)A确定圆的标准方程只需确定圆心坐标和半径,因此用直接法求圆的标准方程时,一般先从确定圆的两个要素入手,即首先求出圆心坐标和半径,然后直接写出圆的标准方程.[再练一题]1.以点A(-5,4)为圆心,且与x轴相切的圆的方程是(  )A.(x+5)2+(y-4)2=25B.(x-5)2+(y+4)2=16C.(x+5)2+(y-4)2=16D.(x-5)2+(y+4)2=25 【解析】 因该圆与x轴相切,则圆的半径r等于圆心纵坐标的绝对值,所以圆的方程为(x+5)2+(y-4)2=16.【答案】 C待定系数法求圆的标准方程 求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程.【精彩点拨】 解答本题可以先根据所给条件确定圆心和半径,再写方程,也可以设出方程用待定系数法求解,也可以利用几何性质求出圆心和半径.【自主解答】 法一:设点C为圆心,∵点C在直线:x-2y-3=0上,∴可设点C的坐标为(2a+3,a).又∵该圆经过A,B两点,∴|CA|=|CB|.∴=,解得a=-2.∴圆心坐标为C(-1,-2),半径r=.故所求圆的标准方程为(x+1)2+(y+2)2=10.法二:设所求圆的标准方程为(x-a)2+(y-b)2=r2,由条件知解得故所求圆的标准方程为(x+1)2+(y+2)2=10. 法三:线段AB的中点为(0,-4),kAB==,所以弦AB的垂直平分线的斜率k=-2,所以线段AB的垂直平分线的方程为:y+4=-2x,即y=-2x-4.故圆心是直线y=-2x-4与直线x-2y-3=0的交点,由得即圆心为(-1,-2),圆的半径为r==,所以所求圆的标准方程为(x+1)2+(y+2)2=10.1.待定系数法求圆的标准方程的一般步骤设方程((x-a)2+(y-b)2=r2)→列方程组(由已知条件,建立关于a、b、r的方程组)→解方程组(解方程组,求出a、b、r)→得方程(将a、b、r代入所设方程,得所求圆的标准方程).2.注意利用圆的有关几何性质,可使问题计算简单.[再练一题]2.求圆心在x轴上,且过点A(5,2)和B(3,-2)的圆的标准方程.【解】 法一 设圆的方程为(x-a)2+(y-b)2=r2(r>0).则解得所以所求圆的方程为(x-4)2+y2=5.法二 因为圆过A(5,2),B(3,-2)两点,所以圆心一定在线段AB的中垂线上. AB中垂线的方程为y=-(x-4),令y=0,得x=4.即圆心坐标为C(4,0),所以r=|CA|==.所以所求圆的方程为(x-4)2+y2=5.[探究共研型]与圆有关的最值问题探究1 若P(x,y)为圆C(x+1)2+y2=上任意一点,请求出P(x,y)到原点的距离的最大值和最小值.【提示】 原点到圆心C(-1,0)的距离d=1,圆的半径为,故圆上的点到坐标原点的最大距离为1+=,最小距离为1-=.探究2 若P(x,y)是圆C(x-3)2+y2=4上任意一点,请求出P(x,y)到直线x-y+1=0的距离的最大值和最小值.【提示】 P(x,y)是圆C上的任意一点,而圆C的半径为2,圆心C(3,0),圆心C到直线x-y+1=0的距离d==2,所以点P到直线x-y+1=0的距离的最大值为2+2,最小值为2-2. 已知x,y满足x2+(y+4)2=4,求的最大值与最小值. 【精彩点拨】 x,y满足x2+(y+4)2=4,即点P(x,y)是圆上的点.而表示点(x,y)与点(-1,-1)的距离.故此题可以转化为求圆x2+(y+4)2=4上的点与点(-1,-1)的距离的最值问题.【自主解答】 因为点P(x,y)是圆x2+(y+4)2=4上的任意一点,圆心C(0,-4),半径r=2,因此表示点A(-1,-1)与该圆上点的距离.因为|AC|2=(-1)2+(-1+4)2>4,所以点A(-1,-1)在圆外.如图所示.而|AC|==,所以的最大值为|AC|+r=+2,最小值为|AC|-r=-2.1.本题将最值转化为线段长度问题,从而使问题得以顺利解决.充分体现了数形结合思想在解题中的强大作用.2.涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地:①k=的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by的最值问题,可转化为动直线截距的最值问题;③形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间的距离的平方的最值问题等.[再练一题]3.已知圆C:(x-3)2+(y-4)2=1,点A(0,-1),B(0,1),设P是圆C上的动点,令d=|PA|2+|PB|2,求d的最大值及最小值. 图411【解】 设P(x,y),则d=|PA|2+|PB|2=2(x2+y2)+2.∵|CO|2=32+42=25,∴(5-1)2≤x2+y2≤(5+1)2.即16≤x2+y2≤36.∴d的最小值为2×16+2=34,最大值为2×36+2=74.1.点P(m,5)与圆x2+y2=24的位置关系是(  )A.在圆外  B.在圆内C.在圆上D.不确定【解析】 ∵m2+25>24,∴点P在圆外.【答案】 A2.以点为圆心,半径为的圆的方程为(  )A.2+(y+1)2=B.2+(y+1)2=C.2+(y-1)2=D.2+(y-1)2=【解析】 由圆的几何要素知A正确. 【答案】 A3.经过圆C:(x+1)2+(y-2)2=4的圆心且斜率为1的直线方程为________.【解析】 圆C的圆心为(-1,2),又所求直线的斜率为1,故由点斜式得y-2=x+1,即x-y+3=0.【答案】 x-y+3=04.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________.【解析】 由题意知圆C的圆心为(0,1),半径为1,所以圆C的标准方程为x2+(y-1)2=1.【答案】 x2+(y-1)2=15.已知圆C的半径为,圆心在直线x-y-2=0上,且过点(-2,1),求圆C的标准方程.【解】 ∵圆心在直线x-y-2=0上,r=,∴设圆心为(t,t-2)(t为参数).∴圆C的标准方程为(x-t)2+(y-t+2)2=17.∵圆C过点(-2,1),∴(-2-t)2+(1-t+2)2=17.解得t=2或t=-1.∴圆心C的坐标是(2,0)或(-1,-3).∴所求圆C的标准方程是(x-2)2+y2=17或(x+1)2+(y+3)2=17. 大班毕业典礼主持词筱:尊敬的各位领导、家长、亲爱的小朋友们:合:大家下午好!筱:今天我们在这里隆重召开大班毕业典礼,为可爱的孩子们三年的幼儿园生活画一个圆满的句号。娜:离别的钟声即将响起,作为老师我们内心有太多说不出的高兴与不舍。为了孩子们即将成为一名小学生而高兴,为了孩子们即将离开我们而依依不舍。婷:三年的集体生活,不仅使孩子们在各方面得到发展,更使孩子们与老师建立了纯真的感情。我们一起学习,一起游戏。合:作为老师,我们有这么多的小精灵陪伴,我们拥有,我们幸福!筱:三年来你们带给我多少的欢声笑语,娜:三年来你们给了我多少的感动和欣慰,婷:此刻你们将要离开这里,我只有默默的祝福你们——我的宝贝:合:愿你们是小鸟从这里起飞,愿你们是小船从这里扬帆,愿你们是骏马在这里奋蹄......娜:文苑幼儿园大班毕业典礼合:现在开始!婷:下面请欣赏家长代表带来的腰鼓《***》大家掌声欢迎。筱:感谢家长代表精彩的表演。下面请我们敬爱的×校长,致毕业典礼的贺词,大家掌声欢迎!1、校长讲话娜:感谢×校长热情洋溢的讲话。下面请我们的家长朋友,×××的妈妈代表家长们上台讲话,大家掌声欢迎。2、家长代表讲话婷:感谢×××妈妈感人的讲话!经典诵读,是我园的一大教育特色之一。下面请欣赏大班级部带来的《毕业诗》和古诗词朗诵:筱:我们的孩子朗诵的好不好?再一次把热烈的掌声送给我们这群聪明、可爱的宝贝们。下面请欣赏大班级部带来的舞蹈《我有一双小小手》,大家掌声欢迎。娜:到了说再见的时刻,这是依依不舍的时刻,也是开心高兴的时刻。婷:亲爱的孩子们,老师将记住你们的天真、善良和爱心。筱:今后,你们无论遇到了什么困难,也请记住老师对你们的爱,在老师心中,你们都是独一无二的!你们都是最棒的!娜:亲爱的孩子们,老师爱你们,永远爱你们。筱:老师为你们祝福,祝愿你们象一只只快乐的小鸟,在广阔的天空自由自在的飞翔;婷:祝愿你们好好学习,实现自己心中的梦想:成为快乐能干的机器猫、机灵勇敢的喜洋洋、聪明美丽的白雪公主!合:再见了,我亲爱的宝贝!幼儿园是你们永远的家,老师是你们永远的守巢人!请欣赏《毕业歌》筱:下面请领导上台给我的小朋友 们颁发毕业证书,大家掌声欢迎。幼儿园的世界是你们实现蔚蓝色梦想的摇篮,我愿是轻抚摇篮的双手,我愿是流淌在你们心间的甜美童谣,陪伴你们在这梦开始的地方快乐成长!喜欢你们甜甜的,稚嫩的叫我老师,喜欢你们每天沐浴阳光,笑如花,感谢你们传递给我的幸福感!祝福你们,亲爱的孩子们,愿您们健康茁壮的成长! 身高:90cm体重:16公斤希望你成为一个聪明活泼、充满爱心,独立自强的人。学习不是为了父母,也不是为了老师,而是为了你自己。要学会勇敢、自信,跌倒并不可怕,可怕的是跌倒不爬起来。最后,愿你自强不息!永往直前!——恩茜的爸爸、妈妈

10000+的老师在这里下载备课资料