课时作业15 导数与函数的极值、最值一、选择题1.当函数y=x·2x取极小值时,x=( B )A.B.-C.-ln2D.ln2解析:y′=2x+x·2xln2=0,∴x=-.2.函数f(x)=x3-3x2+2在区间[-1,1]上的最大值是( C )A.-2B.0C.2D.4解析:f′(x)=3x2-6x,令f′(x)=0,得x=0或2.∴f(x)在[-1,0)上是增函数,f(x)在(0,1]上是减函数.∴f(x)max=f(x)极大值=f(0)=2.3.若函数f(x)=ax3+bx2+cx+d有极值,则导函数f′(x)的图象不可能是( D )解析:若函数f(x)=ax3+bx2+cx+d有极值,则此函数在某点两侧的单调性相反,也就是说导函数f′(x)在此点两侧的导函数值的符号相反,所以导函数的图象要穿过x轴,观察四个选项中的图象只有D项是不符合要求的,即f′(x)的图象不可能是D.4.已知函数f(x)=lnx-,若函数f(x)在[1,e]上的最小值为,则a的值为( A )A.-B.-C.-D.e0.5解析:由题意,f′(x)=+,若a≥0,则f′(x)>0,函数单调递增,所以f(1)=-a=,矛盾;若-e