课时作业12函数模型及应用一、选择题1.下表显示出函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( A )x45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型解析:由表中数据知x,y满足关系y=13+2(x-3).故为一次函数模型.2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( D )A.不能确定B.①②同样省钱C.②省钱D.①省钱解析:方法①用款为4×20+26×5=80+130=210(元),方法②用款为(4×20+30×5)×92%=211.6(元),因为2101+log39=3,故至少要4个小时后才能开车.三、解答题10.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为(万元).则=+-48≥2-48=32,当且仅当=,即x=200时取等号.所以年产量为200吨时,每吨产品的平均成本最低,为32万元.(2)设年获得总利润为R(x)万元,则R(x)=40x-y=40x-+48x-8000=-+88x-8000=-(x-220)2+1680(0≤x≤210).因为R(x)在[0,210]上是增函数,所以x=210时,R(x)有最大值,为-(210-220)2+1680=1660.所以年产量为210吨时,可获得最大利润1660万元.
11.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超过4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x(吨)与支付费用y(元)的函数关系;(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:月用水量x(吨)34567频数13332请你计算该家庭去年支付水费的月平均费用(精确到1元);(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:月用水量x(吨)1234567频数10201616151310据此估计该地“节约用水家庭”的比例.解:(1)y关于x的函数关系式为y=(2)由(1)知:当x=3时,y=6;当x=4时,y=8;当x=5时,y=12;当x=6时,y=16;当x=7时,y=22.所以该家庭去年支付水费的月平均费用为×(6×1+8×3+12×3+16×3+22×2)≈13(元).(3)由(1)和题意知:当y≤12时,x≤5,所以“节约用水家庭”的频率为=77%,据此估计该地“节约用水家庭”的比例为77%.12.牛奶保鲜时间因储藏时温度的不同而不同.假定保鲜时间y(单位:h)与储藏温度x(单位:℃)间的关系为指数型函数y=k·ax(k≠0).若牛奶在0℃的冰箱中,保鲜时间约是192h,而在22℃的厨房中,保鲜时间约是42h.(1)写出保鲜时间y关于储藏温度x的函数解析式.(2)如果把牛奶分别储藏在10℃和5℃的两台冰箱中,哪一台冰箱储藏牛奶保鲜时间较长?为什么?(参考数据:≈0.93)
解:(1)保鲜时间y与储藏温度x间的关系符合指数型函数y=k·ax(k≠0),则解得故所求函数解析式为y=192×0.93x.(2)设f(x)=192×0.93x,因为f(x)是减函数,且10>5,所以f(10)